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Abstract

In complex dynamics, mating is an operation to construct or to describe a
postcritically finite rational map by combining two polynomials. When P
and Q are from non-conjugate limbs of the Mandelbrot set M, the formal
mating g = P tQ has only removable obstructions according to Tan Lei, and
the essential mating g̃ is unobstructed. The Thurston Theorem implies that
there is an equivalent rational map f , unless g̃ is of Lattès type (2, 2, 2, 2):
then we need to construct an affine lift and check its eigenvalues.

In the present paper, the combinatorics of ray-equivalence classes is used
to show that there are nine kinds of matings with g̃ of type (2, 2, 2, 2). The
Shishikura Algorithm yields the affine lifts, and there is an equivalent rational
map f in each case. So the non-conjugate-limbs condition is sufficient for all
postcritically finite quadratic matings.

1 Introduction

In complex dynamics, a classical topic is the iteration of quadratic rational maps
f : Ĉ→ Ĉ, especially postcritically finite maps: the orbits of the critical points z = 0
and z =∞ are periodic or preperiodic. The iteration fn is stable on the Fatou set
Ff and chaotic on the Julia set Jf = Ĉ \ Ff . For a polynomial P (z) = z2 + p, the
fixed point z =∞ is superattracting, and the filled Julia set Kp = {z |P n(z) 6→ ∞}
satisfies Jp = ∂Kp . The Mandelbrot set M is the set of parameters p, such that
Kp is connected. For a postcritically finite parameter p, Kp is locally connected and
the Carathéodory loop γp : S1 → Jp is continuous and a semi-conjugation with
P (γp(t)) = γp(2t) [19]. Geometrically, γp(t) is the landing point of an external ray
(or dynamic ray) Rp(t) with angle 2πt at ∞. See Figure 1 left.

Some rational maps f may be described by mating two polynomials P and Q:
the filled Julia sets Kp and Kq are glued together along their boundaries, such that
γp(t) is identified with γq(−t), which defines a topological sphere under appropriate
conditions. If the resulting topological map is conjugate to f , this gives a semi-
conjugation γf : S1 → Jf from angle-doubling. When both P and Q are critically
preperiodic, the filled Julia sets have empty interiors and we cannot recognize the
mating from an image of Jf = Ĉ; the Peano curve γf : S1 → Ĉ may be visualized by
approximations or finite subdivision rules [18, 2]. — Here are some basic definitions
and constructions, see Section 2 or [8, 11] for more explanations:
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• A topological space Kp
∐Kq is defined by identifying γp(t) with γq(−t). If

it is Hausdorff and homeomorphic to the sphere S2, the topological mating
P
∐
Q : S2 → S2 is defined up to topological conjugacy [22].

• If there is a conjugate rational map f ∼= P
∐
Q, this is the geometric mating.

While these definitions are fairly easy to state, it is hard to show directly, that P
∐
Q

or f exists [8]. In the postcritically finite case, this is done as follows:

• Define the formal mating g = P t Q : Ĉ → Ĉ such that it is topologically
conjugate to P : C → C on the lower half-sphere and to Q : C → C on the
upper half-sphere, and such that the images of the rays Rp(t) and Rq(−t)
meet at exp(i2πt). See Figure 1 top right.

• There may be ray-connections between postcritical points; collapsing these
gives the essential mating g̃ : S2 → S2, which is a branched cover with fewer
postcritical points, a Thurston map. See Figure 1 bottom right. Under the
assumption of Theorem 1.1 below, g̃ does not have a multicurve obstruction
(or Thurston obstruction) according to Tan Lei [33, 34].

• Now the combinatorial mating f is a rational map combinatorially equivalent
(or Thurston equivalent) to the essential mating, f ∼ g̃, which means f is
topologically conjugate to g̃ up to isotopy relative to the postcritical set.

• Since f is expanding in a neighborhood of Jf , a semi-conjugation from g to f
is obtained, which collapses each ray-equivalence class to a point according to
Mary Rees and Mitsuhiro Shishikura [32]. So the quotient Kp

∐Kq is a sphere
and the topological mating P

∐
Q is conjugate to f , which is a geometric

mating at last.

Each postcritically finite parameter p 6= 0 belongs to a limbMk/r of the Mandelbrot
setM, such that the fixed point αp ∈ Kp has the rotation number k/r. If q belongs
to the conjugate limb M−k/r , a mating ∼= P

∐
Q cannot exist, because there are

several ray connections between αp and αq , so the quotient space Kp
∐Kq is not a

sphere. Conversely, we have:

Theorem 1.1 (Rees–Shishikura–Tan)
Suppose p, q ∈ M are postcritically finite and not in conjugate limbs. Then the
combinatorial mating f ∼ g̃ exists, and it is a geometric mating f ∼= P

∐
Q.

The third step above, from the essential mating g̃ to the combinatorial mating f ,
is based on the fundamental theorem of Bill Thurston [6, 7, 4], which comes in two
flavors. The exceptional case concerns maps g̃ of orbifold type (2, 2, 2, 2), which
means there are four postcritical points, and no critical point is postcritical:

• Suppose a Thurston map g̃ is not of type (2, 2, 2, 2). Then there is a contract-
ing map σg̃ on a Teichmüller space, whose fixed point defines a rational map
f ∼ g̃. If there is no multicurve obstruction, the iteration σg̃

n(τ0) is uniformly
contracting, so the fixed point exists.

• When g̃ is of type (2, 2, 2, 2), σg̃ is not contracting. Now g̃ is covered by a
real affine map on the torus R2/Z2; if this map is similar to a complex affine
map, then g̃ is combinatorially equivalent to a rational map f , a Lattès map.
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There are formal matings g = P t Q, such that the essential mating g̃ is of type
(2, 2, 2, 2); then absence of multicurve obstructions is not enough to construct an
equivalent rational map. This exceptional case was not treated completely in [33, 34].
It seems Tan Lei believed at the time, that there are just two examples to consider.
I wrote to her in 2016 to ask about this, only to learn that she had passed away.
— John Milnor [18] has given seven examples altogether, which he attributed to
Mitsuhiro Shishikura in part. Each of these gives a rational map in fact, but the
possibility of further examples constitutes a gap in the proof of Theorem 1.1.

L(w) = ηw + κ ρ = fc , Fu mating

a) κ = 0, η2 = −2 −1 u = 1−
√
2 f ' 1/12

∐
5/12

b) κ = 0, η2 = −2i i c = i f ∼= 1/4
∐

1/4

f ' 23/28
∐

13/28

f ' 53/60
∐

29/60

c) κ = 0, η2 = −3+
√
7i

2
−3−

√
7i

4
c = 1+

√
7i

2
f ∼= 3/14

∐
3/14

f ' 3/14
∐

1/2

f ' 5/6
∐

1/2

f ∼= 1/6
∐

5/14

d) κ = 1/2, η2 = −3−
√
7i

2
−3+

√
7i

4
c = 1+

√
7i

4
f ∼= 1/6

∐
1/6

Table 1: Nine examples of matings f ∼= P
∐
Q are given by external angles of p and

q. See Sections 3.4 and 3.5 for the notation of rational maps fc and Fu . Here ∼= means

the rational map f conjugate to the topological mating has a standard normalization,

γf (0) = 1, and ' indicates that a rotation of the fixed points is applied in addition.

According to Table 1 b), there are four more representations of fi ∼= 1/4
∐

1/4,
of two kinds, which answers a question in [18]. Moreover, we shall see that these
nine examples are the only ones (up to obvious transformations) of type (2, 2, 2, 2),
and check that each of these produces a rational map according to the exceptional
case of the Thurston Theorem. — This completes the proof of Theorem 1.1:

Theorem 1.2 (Lattès matings, following Shishikura)
1. There are thirty formal matings g = P t Q of quadratic polynomials, such that
the essential mating g̃ has orbifold type (2, 2, 2, 2), and the parameters p and q are
not in conjugate limbs of the Mandelbrot set M. Up to complex conjugation and
interchanging P and Q, these matings are represented by the nine matings given in
the table above.

2. In each case, the essential mating g̃ is combinatorially equivalent to a rational
map f , which is given in the table as well. So f is a geometric mating in fact,
conjugate to the topological mating P

∐
Q.

Both items are proved combinatorially. For item 2, a key step is the construction
of a curve through the postcritical points of g̃, such that its preimage is understood
up to homotopy; then the affine lift is obtained explicitly and its eigenvalues are
found to be not real. In Section 2, this is explained in detail for the example
1/12

∐
5/12. A self-contained discussion of rational maps and Thurston maps of

Lattès type (2, 2, 2, 2) is given in Section 3. Item 1 is proved in Section 4: although a

3



ray-equivalence class may contain indirect ray connections, any fixed ray-equivalence
class must contain a fixed point of P or Q, and there are restrictions on periods and
orbits within a limb, which exclude higher rotation numbers. In Section 5, affine lifts
are constructed from the Shishikura algorithm for the remaining examples, proving
item 2. Related results are referenced in Section 6; for the Lattès map of type
(2, 4, 4), it is shown that there are precisely six matings of three kinds.

Acknowledgment: Several colleagues have contributed to this work by in-
spiring discussions and helpful suggestions. I wish to thank in particular Arnaud
Chéritat, Dzmitry Dudko, Michael H. Mertens, Daniel Meyer, Kevin Pilgrim, and
Dierk Schleicher.

2 A worked out example of mating

The various definitions of rays, ray connections, and matings are explained for the
example 1/12

∐
5/12. A curve through the postcritical points and its preimage curve

are constructed, and used to lift the essential mating to an affine map, from which
an equivalent rational map is constructed. These techniques will be applied to other
examples in Section 5. The general discussion of Lattès maps in Section 3 refers to
this explanation as well.

2.1 The formal mating

landing in general and here
alpha limbs beta endpoints
formal, rays and ray connections
topological and essential (briefly)

2.2 The essential mating

formal and essential are tmaps
Figure above, right top to bottom by identifications only of ray connections not

classes, additional half rays for pseudo, or rather moving equator
because topological and obstructions
[28] for canonical, [11] for equivalence
second step identify preimages, no invariant curve or set, additional crossings

and a loop
note: collaps for tilde g, move pseudo eq in addition

? ?
-

-

Ĉ

Ĉ

S2

S2

g ĝ

χ0

χ0

? ?
-

-

Ĉ

Ĉ

S2

S2

g g̃

χ1

χ0

(1)
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Figure 1: left julia sets, right equator seen from inside at -i, and pseudo-equator.

Remark 2.1 (Comparison to the notion of a pseudoequator)
pseudoeq Meyer [15, 16], for fn expanding and for unmating, simply con when direct
raycons, multicon: Kameyama, Meyer, Wilkerson [14, 36]

here not pseudoiso required, just simply and understand preimage

2.3 A simple curve through the postcritical points

now lulia weg and colors
modification an einer stelle
dadurch simple und preimage nur zwei crossings kein loop
beachte alpha 1/2, kurven vertauscht
(figure as high up as possible)
(text from above as much as possible here)

Remark 2.2 (Laminations and the Shishikura algorithm)
In Figure 3 simplified and as round as possible. For lift convenient, also easier to
construct in general: do not deform equator but look identifications from lamina-
tions. Just mark choice of angles on the circle, draw ray connections for required
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Figure 2: modified from pseudo curve, crossing at infty.

preimages or images, identify. related to alternative definition.

1
12

1
6

1
3

7
12

(2
3
)

Figure 3: more circular and nebenbei laminated, and simplified, note which crpts on

edges, convention, no longer 0 infty, even not meaningful, note homo rel P. — keep in

mind two ideas, use of angles and orthocircles, and dealing with pinching points

2.4 Lifting to an affine map

lattice and sublattice and minus, pillowcase, weierstrass holo convenient
normalization circle
point is: branched cover, top map unbranched, ref orbifold
here explicitly by reflections, no general result used
easy from simplified image, in general additional homotopy from curves to lines,

note precomposition map cf curves
matrix explicitly, det and eigenvalues
lift also in [SY] and Meyer peano p. 8

6



�

(
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Figure 4: straightened by lift, preimage after homotopy, then equivalent to affine.

? ? ? ? ?
-

-

�

�

-

-

-

-

S2

S2

Ĉ

Ĉ

C

C

C

C

Ĉ

Ĉ

(2)

2.5 The combinatorial mating

eigenvalues, theorem not real ok or fp mobius, here explicitly complex affine
unique pcf quadratic
commuting diagram, solving beltrami

? ? ? ?
�

�

-

-

-

-

C

C

C

C

Ĉ

Ĉ

Ĉ

Ĉ

? ?
-

-

S2

S2

Ĉ

Ĉ

g̃ f

ϕ1

ϕ0

(3)

2.6 The geometric mating

Remark 2.3 ()
beltrami not explicit, use ansatz, choose normalizaation the finitely many. normal-
izations, different equivalences here eqg to complex, note eql to real. two possibilities
here unclear, only numerically. other cases symmetric and eta2 complex, so unique
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3 Lattès maps and Thurston maps

Well-known results on rational maps and Thurston maps of Lattès type (2, 2, 2, 2)
are explained; the presentation emphasizes the affine lift [2, 29] over the pullback
map used in [6, 7].

3.1 Rational Lattès maps

Consider a lattice Λ = Z · 1 + Z · ξ ⊂ C with Im(ξ) > 0, and an affine map
L(w) = η · w + κ with η · Λ ⊂ Λ, which covers a self-map of the torus C/Λ. From a
branched cover C/Λ→ Ĉ, we obtain a postcritically finite rational map f : Ĉ→ Ĉ
of degree D = |η|2, a Lattès map. Under the symmetry w 7→ −w in particular, with
κ ∈ Λ/2, f has four postcritical points and all critical points are non-degenerate
and not postcritical, which is symbolized by the orbifold type (2, 2, 2, 2). There
is an even Weierstraß function ℘ : C → Ĉ with f ◦ ℘ = ℘ ◦ L. Probably the best
known examples are flexible or integral Lattès maps, which exist when D is a square:
for η =

√
D the generator ξ is arbitrary, giving a one-parameter family of quasi-

conformally conjugate rational maps, which have invariant line fields. We shall see
that already in degree D = 2, Lattès maps have many interesting properties. See
[18, 20, 2] for other properties and alternative characterizations.

cover is branched on Λ/2, maps to postcritical set P of f . f−1(P ) = Ω ∪ P
From now on, we assume the degree is |η|2 = 2. Since η · Λ ⊂ Λ, there are

integers a, b, c, d such that

η · 1 = a+ c ξ η · ξ = b+ d ξ . (4)

Due to the symmetry w 7→ −w, f is covered by another map as well, where η is
replaced with −η, but η2 characterizes f . Different choices of κ may give equivalent
maps, cf. Proposition 3.1.2. A change of ξ means choosing a different fundamental
cell in the same lattice Λ, and the matrix A with components a, b, c, d will be
conjugated with a matrix S ∈ SL2(Z). In the quadratic rational case, we always
have bc 6= 0, and Im(η) = Im(c ξ) 6= 0. Now (4) gives the following relations,

η2 − (a+ d)η + 2 = 0 c ξ2 + (a− d) ξ − b = 0 , (5)

and the determinant is ad − bc = 2. In particular, we have |a + d| ≤ 2 and there
are only finitely many values possible for η2. Moreover, there are only three branch
portraits of type (2, 2, 2, 2) in degree two. Grouping Möbius conjugate maps and
complex conjugate maps together, it turns out there are four cases of quadratic
rational maps of type (2, 2, 2, 2); an overview is given in Table 2.

3.2 The Thurston characterization

define Thurston map g̃, postcritical set P , Thurston’s combinatorial equivalence ∼
(question of rational map, reference to obstructions)
application to constructing rational maps, and matings in particular. A quadratic

Thurston map g̃ of type (2, 2, 2, 2) can be constructed as follows: take the lattice
Λ = Z2 ⊂ R2, fix an even cover R2/Z2 → Ĉ, choose an affine map L(~x) = A~x + ~κ
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Quadratic rational Lattès maps f of type (2, 2, 2, 2)

Branch portrait a) and b)
⇒ • ↘

• → • ↑
⇒ • ↗

c) d)
⇒ • → • ↑

⇒ • → • ↑

⇒ • → •
l

⇒ • → •
a) u = 1±

√
2, η2 = −2, κ = 0

b) c = ±i, η2 = ∓2i, κ = 0
c) c = 1±

√
7i

2
, η2 = −3±

√
7i

2
, κ = 0

d) c = 1±
√
7i

4
, η2 = −3∓

√
7i

2
, κ = 1/2

a) is symmetric under complex conju-
gation,
b) under inversion.

Both c) and d) are symmetric under
inversion.

The Thurston pullback σf , the pull-
back of simple closed curves, and the
virtual endomorphism Φf : H → G of
the pure mapping class group are of fi-
nite order.

All of these relations have no
periodic orbits except for the
unique fixed points of σf and Φf .
(See Section 6.1 and [10].)

In an even map cover, σf projects to
an isomorphism of moduli space, and
a moduli space map k exists there.

The correspondence on moduli space is
not reduced in a covering space [10].

Some iterate of f is a flexible Lattès
map.

No iterate of f is flexible.

Quadratic Thurston maps g̃ of Lattès type (2, 2, 2, 2)

The trace of A is even.
All values of ~κ are equivalent.

The trace is odd.
Changing ~κ gives either c) or d).

g̃ cannot have an obstruction. g̃ may be multicurve obstructed.

Table 2: Up to conjugation with a Möbius transformation or complex conjugation, there

are four cases of quadratic rational maps of type (2, 2, 2, 2); see Sections 3.4 and 3.5 for

concrete formulas. Thurston maps of type (2, 2, 2, 2) are discussed in Sections 3.2 and 3.3.

with A ∈ Z2×2 of determinant 2 and ~κ ∈ Z2/2, and define g̃ : Ĉ→ Ĉ such that it is
covered by L. The notation

A =

(
a b
c d

)
:

(
d
−c

)
7→
(

2
0

)
,

(
−b
a

)
7→
(

0
2

)
(6)

is compatible with (4) and (5); so η is an eigenvalue of A and ξ corresponds to the
second base vector, if it is not real. Conversely, every quadratic Thurston map g̃ of
type (2, 2, 2, 2) is equivalent to a map covered by an affine map in this way. See
[6, 7, 2, 29] for the proof, which is based on the intermediate lift to a torus and
on the identification of a homology group with Z2, or on the notion of a universal
orbifold cover.

Proposition 3.1 ()
1. A quadratic Thurston map g̃ : Ĉ → Ĉ is of type (2, 2, 2, 2), if it has four
postcritical points and no critical point is postcritical. Assuming that there are no
additional marked points, it is combinatorially equivalent to a map covered by a real
affine map L(~x) = A~x+ ~κ on the torus R2/Z2 modulo ~x 7→ −~x.

2. The possible branch portraits according to Table 2 are related to the parity of the
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trace t = a+ d:

• When t is even, the branch portrait is a)-b), and all values of the translation
~κ ∈ Z2/2 give conjugate affine maps L.

• When t is odd, changing ~κ gives two different affine conjugacy classes, which
correspond to the branch portraits of case c) and d), respectively.

3. Suppose the Thurston maps g̃ and g̃′ are covered by the affine maps L(~x) = A~x+~κ
and L′(~x) = A′~x+ ~κ′, respectively. Then g̃′ is combinatorially equivalent to g̃, if and
only if L′ is affine conjugate to ±L modulo Z2, such that A′ is similar to ±A with
a conjugator S ∈ SL2(Z).

Proof: 1. See the references given above, and [29] for the case of additional
marked points; then a lift is possible unless there are removable Lévy cycles. lift in
A.8 in [2]. Note two cases and three kinds of arcs.

2. The branch portrait is obtained by checking all combinations of parity; a
priori there are sixteen combinations, but a few are ruled out by determinant 2. An
explicit calculation checks whether two translations in Z2/2 are equivalent in Z2 by
conjugating with a translation in Z2/2.

3. Combinatorial equivalences ψ0 , ψ1 are covered by maps isotopic to the same
affine map; this map sends Z2/2 to itself, so S ∈ SL2(Z). We cannot distinguish
between A and −A, since the cover identifies ~x and −~x.

Theorem 3.2 (Thurston characterization)
Consider a quadratic Thurston map g̃ : Ĉ→ Ĉ of type (2, 2, 2, 2), which is covered
by the real affine map L(~x) = A~x + ~κ on C/Z2 up to isotopy. Then g̃ is combina-
torially equivalent to a rational map f , if and only if the eigenvalues of A are not
real, or equivalently, if the trace is |t| ≤ 2.

Proof: If the eigenvalues are not real, determine ξ and η from (4) and (5) with
Im(ξ) > 0. Conjugate L with an affine map R2 → C, which is sending the base
vectors to 1 and ξ. The new map will be of the form η ·w+κ, so it covers a rational
Lattès map f . Conversely, any rational f is described by an affine map with non-
real eigenvalues according to the previous Section 3.1, and the matrices must be
conjugate by Proposition 3.1.3.

In practice, the affine lift of a Thurston map g can be obtained as follows: choose a
simple closed curve γ through the four postcritical points, and cover Ĉ by R2/Z2 such
that the interior of γ is covered by [0, 1/2]2. Lift γ′ = g̃−1(γ) to R2. The curves will be
Z2-periodic and isotopic to straight lines through lattice points. Choose a fundamental
cell and determine the affine map L sending this parallelogram to [0, 1]2. The coefficients
of A are read off from (6). Of four adjacent cells, two will give an orientation-preserving
map, and these two give ±A.

3.3 The Thurston pullback

dfn Teichmüller space, moduli space, π, and pullback map σg̃; fixed point gives equiva-
lence to rational map [DH, book2, teich]

In the previous Section 3.2, we have characterized Thurston maps g̃ of type
(2, 2, 2, 2) in terms of the trace t = a + d of an associated matrix A, and it was
not necessary to consider the pullback map. Now σg̃ shall be discussed as well for
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two reasons: to compare the pullback behavior to maps of type not (2, 2, 2, 2), and
because the convergence properties of the Thurston Algorithm for certain matings
will be investigated in [5].

Theorem 3.3 (Thurston pullback)
Suppose g̃ : Ĉ → Ĉ is a quadratic Thurston map of type (2, 2, 2, 2), without addi-
tional marked points. Then Teichmüller space T is identified with the upper half-
plane, and the Thurston pullback is given by a Möbius transformation

σg̃(τ) =
d τ + b

c τ + a
(7)

with integer coefficients and determinant 2. There are two possible cases:

• σg̃ has a unique fixed point τ = ξ in the upper halfplane T . Then g̃ is combinatori-
ally equivalent to a rational Lattès map f , which is unique up to Möbius conjugation.
The fixed point is neutral with multiplier ρ = 2/η2.

• σg̃ does not have a fixed point in T , there is no equivalent rational map, and the
Thurston pullback τn = σn

g̃
(τ0) diverges to the boundary of T .

Proof: explain pullback of constant Beltrami coefficient This gives (7), where
a, b, c, d are the coefficients of the matrix A. Now σg̃(τ) = τ yields the same
equation as (5) for ξ, so a fixed point τ in the upper halfplane exists, if and only if
there is a ξ with Im(ξ) > 0. A short computation gives σ′

g̃
(ξ) = 2/η2.

Remark 3.4 (Multicurve obstructions)
When g̃ is not of type (2, 2, 2, 2), the Thurston pullback is non-uniformly contract-
ing, so a fixed point is unique and globally attracting. An obstructing multicurve
Γ for a Thurston map g̃ has certain properties under pullback, which imply that in
the Riemann surfaces defined by τn , corresponding hyperbolic geodesics get shorter
and annuli get thicker, which may prevent convergence. When g̃ is not of type
(2, 2, 2, 2), the Thurston Theorem says that g̃ is equivalent to a rational map, if
and only if it is unobstructed. This is not true if g̃ is of Lattès type (2, 2, 2, 2):

• When g̃ is quadratic and the matrix A from the affine lift of g̃ has trace |t| ≥ 4,
there will be no obstruction, but g̃ is not equivalent to a rational map either. The
pullback is bounded in moduli space, but diverges to the boundary in Teichmüller
space.

• Only for |t| = 3 there is an obstruction, and the iteration diverges to the boundary
in moduli space as well, since the obstruction is pinching. According to Selinger [28],
invariant essential curves are related to integer eigenvectors of A, and so determinant
2 requires trace ±3. Note that an obstructed map will be of case c) or d) accord-
ing to Proposition 3.1.2. Alternatively, the core arc argument shows that maps of
case a)-b) are unobstructed, since an invariant essential curve would contradict the
branch portrait.

• Quadratic rational maps are always unobstructed, but when the degree is a square,
there exists a family of flexible Lattès maps, which have a non-pinching obstruction
in fact.
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3.4 The rational maps of cases a) and b)

Now we shall determine the quadratic rational Lattès maps f of type (2, 2, 2, 2)
explicitly, by observing the branch portraits visualized in Table 2. See also [18, 20].
The pullback correspondence on moduli space is discussed as well. The affine maps
from the previous Sections 3.2–3.3 will not be used to obtain f ; but to see which
rational map corresponds to which value of η, either the relation ρ = 2/η2 can be
employed, or the fact that a fixed point of f has multiplier ±η if it is not postcritical,
and multiplier η2 if it is.

The branch portrait of cases a) and b) is the same: both critical values are
mapped to the same prefixed point. Assume that the critical points are 0 and ∞,
so that f is even, and put the postcritical fixed point at 1, so f(±1) = 1. Denoting
the critical values by f(0) = u and f(∞) = −u, we have functions of the form Fu

with

Fu(z) = −u
z2 + 1+u

1−u
z2 − 1+u

1−u
F−1u (z) =

√
1 + u

1− u
· z − u
z + u

. (8)

These functions will be used both for the Thurston pullback, where the parameter
u varies, and to determine specific values of u representing Lattès maps. Now the
condition Fu(±u) = −1 gives (u2 + 1)(u2 − 2u− 1) = 0.

Case a) is given by u = 1 ±
√

2, so F1±
√
2(z) = −(1 ±

√
2) z

2−(1±
√
2)

z2+(1±
√
2)

. The

two maps are real in this normalization, not symmetric under inversion, but they
are transformed into each other by the inversion in fact; so they belong to the
same combinatorial equivalence class, when critical points are not marked. We have
η2 = F ′

1±
√
2
(1) = −2 and κ = 0.

Case b) shall denote the maps with u = ±i, F±i(z) = ∓i z2±i
z2∓i . The two maps

are complex conjugate to each other, and each is invariant under conjugation with
the inversion z 7→ 1/z, so it can be written in the form f±i(z) = z2±i

1±iz2 according to
(10) as well. Computing F ′u(1) = (1 − u2)/u gives η2 = −2i for fi and η2 = 2i for
f−i , and we may assume κ = 0.

In this normalization at 0 and∞, moduli space is given by u ∈ Ĉ\{0, ∞, −1, 1}.
In case a) or b), the Thurston pullback σf of f defines a correspondence on moduli
space, such that u is pulled back to u′. Now u determines Fu by its critical values,
and u′ satisfies Fu(±u′) = −1 since Fu(−1) = 1. This example has the special
property, that the correspondence is reducible: (8) gives

u′ = ±1 + u

1− u
, a) u′ = −1 + u

1− u
b) u′ = +

1 + u

1− u
. (9)

Here the sign is determined from the known values of u at the fixed point of σf ; it
is the same sign globally by analytic continuation. The multiplier ρ of the Thurston
pullback is computed either from (9) or from the general relation ρ = 2/η2, which
gives ρ = −1 in case a), and ρ = ±i for F±i = f±i , η

2 = ∓2i of case b).

Remark 3.5 (Thurston pullback map)
1. The Thurston pullback map is of finite order, σ2

f or σ4
f is the identity. This

can be seen either from the fact that it is a Möbius transformation of the upper
halfplane with a rationally neutral fixed point, or by noting that at its fixed point,
σf is analytically conjugate to a branch of the correspondence (9) on moduli space,
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and employing analytic continuation. Note that π : T → M is an infinite–to–one
cover semiconjugating the Möbius transformation σf to the Möbius transformation
(9). When g is a Thurston map of type (2, 2, 2, 2) with branch portrait a)-b), the
correspondence on moduli space is given by (9) as well, but σf will not be of finite
order, if it does not have a fixed point.

2. In case a), f 2 is a flexible Lattès map of degree four (see also Section 6.6). Since
f is a geometric mating according to Theorem 1.2, the composition is represented
by a mating, whose combinatorial equivalence class does not determine a unique
Möbius conjugacy class; this observation is due to Pilgrim [18]. Now σf can be used
to obtain a parametrization for the flexible family: with u′ = −(1 + u)/(1 − u),
define Iu = Fu ◦ Fu′ .

3. The correspondence on moduli space is reducible only in the “even” normalization
with marked critical points, which is a double cover of ordinary moduli space in fact,
see [10].

4. Since the maps f±i are symmetric under inversion, we may look at the pullback
map restricted to symmetric maps. It turns out that this map is actually constant,
since fc(±i) = −1 for all parameters c. Locally there are two invariant manifolds,
one with even maps and multiplier ∓i, one with symmetric maps and multiplier 0;
the first step of the pullback lands on the even one, and symmetric maps land on
the fixed point. We shall see in [5] that slow mating converges for the self-mating
of z2 + γM(1/4), which is related to the eigenvalue of the invariant manifold being 0
instead of neutral (see also Section 6.3).

3.5 The rational maps of cases c) and d)

Consider the following one-parameter families of quadratic rational maps, with c 6=
±1, u 6= 0, 1, or u 6= ±1. Again they are normalized with critical points 0 and ∞,
and fc is symmetric with respect to conjugation by the inversion z 7→ 1/z :

fc(z) =
z2 + c

1 + cz2
hu(z) =

z2 − 2u
u+1

z2 − 2
u+1

Hu(z) =
z2 − u+1

2

z2 − u+1
2u

(10)

Case c) is a Lattès map with disjoint critical orbits, such that both critical values
are mapped to fixed points. Now hu according to (10) satisfies∞⇒ 1→ −1 ↑ , and
0 ⇒ u → −u ↑ requires hu(±u) = −u or u(u − 1)(u2 + 3u + 4) = 0; here u = 1 is
excluded and u = 0 has a different branch portrait. So u = (−3±

√
7i)/2 gives two

complex conjugate Lattès maps hu . It turns out tht these are rescaled to symmetric
maps fc with c = (1±

√
7i)/2. We have η2 = (−3±

√
7i)/2 and κ = 0.

The Thurston pullback induces a correspondence on moduli space; hu(±u′) = −u
gives

h−1u (z) =

√
2

u+ 1
· z − u
z − 1

, u′ = h−1u (−u) =
2
√
u

u+ 1
. (11)

The irrationally neutral fixed points at u = (−3 ±
√

7i)/2 have the multipliers
ρ = (−3 ∓

√
7i)/4. There is a superattracting fixed point at u = 1 indicating a

possible pinching obstruction; u = 0 is not attracting.
Case d) denotes a Lattès map with a postcritical 2-cycle. It shall have the

following branch portrait: 0 ⇒ u → −1 ↔ −u ← 1 ⇐ ∞. This is provided by Hu
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if u satisfies Hu(±u) = −1, or (u− 1)(4u2 + 3u+ 1) = 0. So there are two complex
conjugate maps Hu with u = (−3±

√
7i)/8. Again, they are rescaled to symmetric

maps fc with c = (1 ±
√

7i)/4. Then ±η = f ′c(1) shows η2 = (−3 ∓
√

7i)/2 for the
affine lift, and κ = 1/2 gives the correct branch portrait.

Now consider the Thurston pullback with π(τ) = u and π(σf (τ)) = u′ in the
even normalization Hu . The correspondence on moduli space is determined from
Hu(±u′) = −1 as

H−1u (z) =

√
u+ 1

2u
· z − u
z − 1

, u′ = H−1u (−1) =
u+ 1

2
√
u
. (12)

At the parameters u = (−3 ±
√

7i)/8, a branch has a neutral fixed point with the
multiplier ρ = (−3 ±

√
7i)/4 = 2/η2. Note that ρ2 + 3

2
ρ + 1 = 0 shows that the

fixed point is irrationally neutral; I do not know whether it is Brjuno, but a local
branch of (12) will be linearizable anyway, because it is conjugate to the Möbius
transformation σf . The pullback relation has a superattracting fixed point u = 1 in
addition, which does not correspond to a rational map, but indicates that Thurston
maps with branch portrait d) may have a pinching obstruction. Moreover, this fixed
point is related to the convergence of arithmetic-geometric means [21]. In both
cases c) and d) the Teichmüller space and moduli space contain another invariant
manifold corresponding to symmetric maps. The pullback relation reads

c) c′ =

√
− 2c

c2 + 1
, d) c′ =

√
− c

2 + 1

2c
. (13)

These pullback relations are locally conjugate to (11) and (12), respectively, via
u = c2. So they have the same neutral multiplier ρ at corresponding fixed points, in
contrast to case b) according to Remark 3.5.4. — Note that the affine lifts of cases
c) and d) have the same η2 but differ in the translation κ; the rational maps are
related, e.g., as follows: if fc is of case c), then f1/c is of case d), and f 2

c = f 2
1/c .

4 Lattès maps as matings

. . .

4.1 Polynomial dynamics and combinatorics

P, K, rays, landing, persistence behind root [17, 27]
in next subsection mention phi(K), say fixed either 0ray or length 2 or length 4,

need to bound denominator/ray period
In Sections 4.2 and 6.5, we shall need special results on periodic cycles, to find

or to exclude certain types of ray connections, and to characterize essential matings
with specific ramification portraits. Item 1 is proved by counting endpoints of Hub-
bard trees, and items 2 and 3 mean that the dynamics for a rotation number with
high denominator is rigid with respect to small changes. See also Proposition 4.1.c
in [9].
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Lemma 4.1 (Combinatorics of quadratic polynomials)
Consider a critically preperiodic polynomial P (z) = z2 + p.

1. Suppose p has preperiod k, and the corresponding periodic cycle of P k(p) persists
from the root p′ ≺ p. Then k ≥ 2, and k = 2 occurs only when p is real.

2. Suppose p has preperiod k and it belongs to a limb of denominator r. The periodic
cycle of P k(p) shall have the same angles as the α-fixed point of another limb of the
same denominator r:
a) If k = 1, then r = 3.
b) If k = 2 and the two limbs are conjugate, then r = 3 or r = 4.

3. Suppose p, p̃ are parameters of preperiod 1 and belong to limbs of denominators
r, r̃. Now P (p) shall have an angle of αp̃ and P̃ (p̃) shall have an angle of αp . If
r̃ < r, then r̃ = 2 and r = 3.

Recall that for each hyperbolic component with root p′ 6= 1/4, there is an associ-
ated cycle of primitive or satellite type, whose rays persist for all parameters p� p′.
Conversely, if a periodic cycle of P does not consist of endpoints, there will be a
corresponding root p′ � p. In particular, when p belongs to the limb of rotation
number s/r, the fixed point αp has an r-cycle of dynamic rays.

Proof: 1. First, assume that p′ is the root of a limb with rotation number s/r.
Then P k(p) = αp requires k ≥ r, so k = 1 is excluded, and k = 2 only for r = 2 and
the real parameter p = γM(5/12) = γM(7/12). Second, assume the periodic cycle is
z1 , . . . , zm with m ≥ 3 and the characteristic point z1 separating p from the other
points in the cycle. T is the Hubbard tree of P and T ′ ⊂ T the connected hull of the
m-cycle. Then z1 and z2 are endpoints of T ′, and 0 is an inner point. p is behind
z1 and P (p) behind z2 , i.e., z2 is separating P (p) from 0. If k = 1, then P (p) is a
periodic point zj behind z2 , which contradicts z2 being an endpoint of T ′. If k = 2,
then z3 is not an endpoint of T ′, because P 2(p) would be a periodic point behind it;
noting that P is injective on [z1 , p] and on [z2 , P (p)], and an arc before z2 would
be mapped before z3 . So T ′ has only two endpoints, and P 2(p) ∈ T ′ implies that T
has two endpoints as well, so p is real.

2a) For r = 2, there is no other limb of the same denominator. For r = 3,
p = γM(±3/14) belongs to the limb with rotation number ±1/3, and it is mapped
to the angle ±3/7, which belongs to α of the conjugate limb. For r ≥ 4 we shall
obtain a contradiction: Denote the sectors at αp by W1 , . . . , Wr in the order of the
orbit of p, with p ∈ W1 and 0 ∈ Wr . The periodic r-cycle of P (p) shall be labeled
such that it has corresponding indices, so z2 = P (p) ∈ W2 , . . . , zr = P r−1(p) ∈ Wr ,
and z1 = P r(p). Now z1 is the periodic preimage of z2 , so z1 = −p is behind
−αp and belongs to Wr . The periodic points are endpoints by item 1, and we are
interested in the cyclic order of their angles θj . Since θr and θ1 are the only angles
in Wr , the rotation number must be ±1/r. Compare these angles to the original
sectors: we have removed position 1 and added a new position 1 next to position r.
If r ≥ 4, there are at least two neighboring positions left unchanged, so the rotation
number was ±1 in the limb of p already. This contradicts the hypothesis and item 1.

2b) For r = 3 or r = 4 we have p = γM(±5/28) and p = γM(±7/60), respectively.
For r = 5 and r = 6, no solution is found. It remains to obtain a contradiction for
r ≥ 7: We have p ∈ W1 , P (p) ∈ W2 , P 2(p) = z3 ∈ W3 , . . . , P r−1(p) = zr ∈ Wr ,
P r(p) = z1 , and P r+1(p) = z2 = −P (p) ∈ Wr . Now z1 is mapped into Wr , so
z1 ∈ Wr−1 or z1 ∈ Wr .
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Case 1: z1 ∈ Wr−1 and in Wr we have, say, the cyclic order zr before z2. Then
the new rotation number is s′/r with s′ = (r + 1)/2, so the old one was s/r with
s = (r − 1)/2. It turns out that compared to the order of the original sectors,
two neighboring positions are swapped two times; position 1 is swapped with r− 1,
and position r swapped with 2. But there are other positions jumping over two
neighbors, so the rotation number could not have changed.
Case 2: z1 ∈ Wr and in Wr we have s′ steps from zr to z1 and from there to z2
as well. So without restriction assume s′ = 1. Then zr−1 comes directly before zr
regarding the cyclic order of angles. Since we have no periodic points in W1 and
W2 , only these could be between Wr−1 and Wr , so the old number of steps s was
1, 2, or 3. This contradicts s+ s′ = r.

3. For r = 3 and r̃ = 2, we have p = γM(±1/6) and p̃ = γM(∓5/14). So suppose
p has rotation number s/r with r ≥ 4. We may assume s/r < 1/2. Denoting the
sectors at αp by W1 , . . . , Wr again, the periodic points are in W2 , . . . , Wr : the
latter sector is the first one mapped back to W2 , so r̃ = r−1. There are 2s−1 steps
from zr to its image z2 and s steps from zr−1 to zr . So s = 1, αp has rotation number
1/r and αp̃ has 1/(r−1). The possible angles of the endpoint p̃ are determined from

the inequality 1
2r−1−1 <

5
2(2r−1) <

7
2(2r−1) <

2
2r−1−1 . However, doubling the two angles

in the middle does not give an angle of αp , which is of the form 2j

2r−1 .

4.2 Lattès maps of type (2, 2, 2, 2) as matings

Up to inversion and complex conjugation, we have four rational maps f and nine
matings g to consider, see Table 1. According to [18], Shishikura has found seven of
these matings and determined, which formal mating g corresponds to which rational
function f . Interchanging P and Q conjugates the mating with an inversion, and
reflection of both angles means complex conjugation of P and Q and of the ratio-
nal map. Altogether we have thirty matings for eight rational maps up to linear
conjugation, or seven rational maps up to Möbius conjugation.

Theorem 4.2 (Possible Lattès matings, following Shishikura)
There are thirty formal matings g = P t Q of quadratic polynomials, such that the
essential mating g̃ has orbifold type (2, 2, 2, 2), and the parameters p and q are
not in conjugate limbs of the Mandelbrot set M. Up to complex conjugation and
interchanging P and Q, these matings are represented by the nine matings given in
Table 1.

The nine kinds of formal matings are obtained below, and the corresponding ra-
tional maps are identified as combinatorial matings in Section 5 from the Shishikura
Algorithm [18]; this completes the proof of the Rees–Shishikura–Tan Theorem 1.1
for orbifold type (2, 2, 2, 2). To prove there are only nine types up to Möbius
transformation and complex conjugation, we shall employ the following ideas:

• If g̃ has a postcritical fixed point, a postcritical point of g must belong to a fixed
ray-equivalence class. By an observation of Sharland [30], a ray-equivalence
class fixed by g must contain a fixed point of P or Q. See Proposition 3.1 in
[8] for a more detailed description of rational ray-equivalence classes.
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• The ray-equivalence class of β is a single ray, but the class of α provides more
possibilities. To build longer ray connections, use rays from different cycles
landing together at periodic points, that persist from primitive hyperbolic
components before the current parameters. In principle these connections can
be arbitrarily long, but when a ray-equivalence class contains an α-fixed point,
there will be no primitive hyperbolic component of the same ray period in that
limb.

• For a preperiodic parameter of low preperiod k in a limb of high ray period r,
the corresponding periodic cycle will follow the rotation for several steps; in
certain situations, this places a restriction on r. Specific results were obtained
in Lemma 4.1 from polynomial combinatorics.

We shall frequently speak of rays with angle θ connecting Kp and Kq ; this gives an
accurate description of the combinatorics without taking complex conjugate angles
all the time, but geometrically it means that the θ-ray of Kp is joined with the ray
of angle −θ at Kq .

Proof of uniqueness for the branch portrait of cases a)-b): Since the
essential mating maps both critical values to the same prefixed point, P 2(p) and

Q
2
(q) must belong to the same ray-equivalence class, which is fixed by the formal

mating g. If this is the 0-ray, we have p = q = γM(±1/4) since p = q is excluded.
Otherwise this class contains an α-fixed point of P or Q; by Möbius conjugation we
may assume it to be αp , as the branch portrait is symmetric.

1. Suppose P 2(p) = αp , then p is real by Lemma 4.1.1 since the preperiod is
k = 2. So p = γM(5/12) = γM(7/12) and the only remaining angles of the same
denominator are 1/12 and 11/12. Taking one of these for q is seen to work, since q

is not in the same limb as p, and Q
2
(q) shares an angle with αp .

2. Now suppose that P 2(p) is connected to αp . This connection goes through
only one primitive cycle of Q and P 2(p) is an endpoint of the ray-equivalence class,
since there is only one hyperbolic component with the ray period of αp in the limb

of p. Thus Q
2
(q) must belong to the same primitive cycle of Q, and by Lemma 4.1.1

again, q is real. So the cycle is real and joins complex conjugate angles; the angle
of P 2(p) is complex conjugate to an angle of αp . Now Lemma 4.1.2b says that p
is in a limb of ray period 3 or 4. Each of these limbs has a unique angle with the
required denominator, which defines p, and a unique q is found to work: it is real

and the primitive cycle at Q
2
(q) shares angles with both P 2(p) and αp . This gives

±5/28
∐

13/28 and ±7/60
∐

29/60.
Proof of uniqueness in case c): In the essential mating g̃, the critical values

are mapped to different fixed points; in the formal mating g, P (p) and Q(q) belong
to distinct fixed ray-equivalence classes. Up to Möbius conjugation, we have the
following possibilities:

1. If both classes contain β-fixed points, so p = q = −2, we are in conjugate
limbs. The classes are not actually distinct and the essential mating is undefined,
since the critical values would coincide. The topological mating would be defined
on a line segment instead of a sphere. In this case, the formal mating is of type
(2, 2, 2, 2) in fact, and it is obstructed with trace ±3.

2. Suppose Q(q) = βq, so q = −2, and P (p) is in the ray-equivalence class of
αp . Preperiod k = 1 and Lemma 4.1.1 give P (p) 6= αp . The ray connection from
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P (p) to αp passes through a single periodic point of Q, and the angle is complex
conjugated since the periodic points are real. So P (p) shares its angle with αp .
By Lemma 4.1.2a, we have p = γM(±3/14) ∈ M±1/3 . The angle ±3/7 of P (p) is
reflected at the Airplane characteristic point in Kq to become ±4/7, which is an
external angle of αp .

3. Suppose Q(q) = βq, so q = −2, and P (p) is in the ray-equivalence class of αq ,
which consists of the rays with angles ±1/3. This gives p = γM(±1/6).

4. Suppose P (p) is connected to αp and Q(q) is connected to αq . Since k = 1,
Lemma 4.1.1 gives P (p) 6= αp and Q(q) 6= αq . So the former ray-equivalence class
contains a primitive cycle of Q, whose period is greater than the ray period of αq

and the same as the ray period of αp . But by the same arguments, the ray period
of αq is greater than that αp , which is a contradiction.

5. Suppose P (p) is connected to αq and Q(q) is connected to αp . These connec-
tions must be direct, since a longer connection would require a primitive hyperbolic
component before p but with period exceeding the ray period of that limb, or anal-
ogously for the limb of q. So P (p) shares its angle with αq and Q(q) shares its
angle with αp . The ray periods may be equal or different. In the former case,
Lemma 4.1.2a gives p = q = γM(±3/14); P (p) has the angle ±3/7, which is found
at αq as well. When the ray periods are different, Lemma 4.1.3 gives p ∈M±1/3 and
q ∈ M1/2 or vice versa. So P (p) has the angle 1/3 or 2/3, yielding p = γM(±1/6),
and Q(q) has ±1/7, ±2/7, or ±4/7, giving q = γM(±9/14) and q = γM(±5/14).

Proof of uniqueness in case d): In the essential mating, both critical values
shall be mapped to the unique 2-cycle. For ±1/6

∐±1/6 this works, because the
2-cycles of P and Q have direct ray connections. Suppose we had a different formal
mating with a 2-cycle of ray-equivalence classes, which contain P (p) and Q(q),
respectively. Without restriction, the 2-cycle of P is of satellite type and forms
the symmetry centers of these ray-equivalence classes, and p is in a sublimb of the
period-2 component of M. Since the preperiod is k = 1, Lemma 4.1.1 shows that
p is an endpoint of M and P (p) is an endpoint of its ray-equivalence class. So
Q(q) is an interior point of the other ray-equivalence class; it is of primitive type in
contradiction to preperiod k = 1.

5 The Shishikura Algorithm

5.1 General remarks

aim to prove

Theorem 5.1 (Existence of Lattès matings, following Shishikura)
According to Theorem 4.2, there are nine kinds of formal matings g = P t Q of
quadratic polynomials, such that the essential mating g̃ has orbifold type (2, 2, 2, 2),
and the parameters p and q are not in conjugate limbs of M. In each case, the
essential mating g̃ is combinatorially equivalent to a rational map f ' P

∐
Q, which

is given in Table 1 as well.

both proof of matability and identification.
two combinatorial steps
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• to model essential find curve and preimage, here not with multicon pseudo eq
but with angles on circle: two preper polys, choose one point in each postcrit
class, preimage of crv isc rossing, rest maybe connected inside or outside

• lift when (2, 2, 2, 2), affine map as in . . . 2/3, complex eigenvalues give com-
binatorial mating as in ... 2/3

Remark 5.2 (Laminations)
[35] [25] for matings from laminations

neither g nor tilde g, identified zu tilde g and topo

[18] called so, only length 1
[18] curve is equator, one point in each ray-equivalence class, lifted to curves on

torus, preimages correspond to subintervals of angles, no mention of problems with
longer ray connections.

in 2 several concepts, julia sets and pseudo and essential, here simplified to angles
and connections

5.2 Ray connections of length 1

�

g̃

1
6

1
3

2
3

5
6

�

A =

(
0 2
−1 1

)

~κ =

(
0

1/2

)

Figure 5: f ∼= 1/6
∐

1/6.

f ∼= 1/6
∐

1/6 yet f ∼= 1/4
∐

1/4
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5.3 Ray connections of length 2

�

g̃

3
14

3
7

4
7

11
14

�

(
2 −2
2 −1

)

Figure 6: f ∼= 3/14
∐

3/14.

yet f ' 1/12
∐

5/12 f ∼= 3/14
∐

3/14 peter f ' 3/14
∐

1/2 peter f ' 5/6
∐

1/2
f ∼= 1/6

∐
5/14

5.4 The Petersen transformation

fc(z) = z2+c
1+cz2

. Since f1/c(z) = 1/fc(1/z),
The Petersen transformation is a semi-conjugation from both fc and f1/c to the

same Chebyshev map [37, 18, 13]. In particular, if p ∈M is postcritically finite and
not in the 1/2-limb, then P

∐
P is semi-conjugated to P

∐
T with the Chebyshev

polynomial T (z) = z2 − 2. So ±1/4
∐±1/4 are semi-conjugated to the map of

type (2, 4, 4) according to Section 6.5, and both 3/14
∐

3/14 and 5/6
∐

5/6 are
semi-conjugated to 3/14

∐
3/14.

peter f ' 3/14
∐

1/2
peter f ' 5/6

∐
1/2

5.5 Ray connections of length 4

f ' 5/28
∐

13/28 similarly f ' 7/60
∐

29/60
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�

g̃

1
6

2
71

3

9
14

�

(
0 −2
1 1

)

Figure 7: f ∼= 1/6
∐

5/14.

6 Related questions and results

. . . ref to question choice in Remark 2.3 . . .

6.1 Algebraic aspects of Thurston theory for Lattès maps

[10]
curves and endo, maybe reduction, or above already in 3
not hurwitz and msm
twisted lattes

6.2 Anti-matings

A quadratic anti-mating f ∼= P
∏
Q is constructed analogously to a mating, such

that the formal anti-mating g = P u Q interchanges the two half-spheres [1, 13].
The quartic Julia sets KQ◦P and KP◦Q are glued along their boundaries, and the
parameters p and q are chosen such that the quartic dynamics is postcritically finite.
They are not related to the Mandelbrot set unless p = q, which gives a symmetric
rational map of the form fc(z) = z2+c

1+cz2
. Since f1/c(z) = 1/fc(1/z), we have fc ∼=

P
∐
P if and only if f1/c ∼= P

∏
P , and both are semi-conjugated to P

∐
T by the
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�

g̃

15
28

9
14

5
28

2
7

�

(
1 −1
1 1

)

Figure 8: f ' 5/28
∐

13/28.

Petersen transformation (see Section 5.4). Computing 1/c for the three kinds of
self-mating in Table 1 gives the self-anti-matings

1/4
∐

1/4 ∼= 3/4
∏

3/4, 1/6
∐

1/6 ∼= 11/14
∏

11/14, 3/14
∐

3/14 ∼= 5/6
∏

5/6. (14)

According to Ahmadi Dastjerdi [1], an essential anti-mating g̃ is unobstructed,
if the three fixed rays of the quartic polynomials land at different points; again, if
g̃ is of type (2, 2, 2, 2), this does not suffice to obtain a rational map, and we need
to check the eigenvalues of the associated matrix. For the branch portraits of cases
a)-b) and c), it turns out that g must be a self-anti-mating, possibly rotated, and
we are done with (14). However, so far I have been unable to show that the only
anti-mating of kind d) is ±3/14

∏±3/14.

6.3 Convergence of slow mating

[11] otherwise convergent
[4] for distinction (2, 2, 2, 2) not parabolic
[5] here not, spiraling
except 1414, explanation symmetry not normalization–check for other normal-

ization invariant manifold, and petersen
videos
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6.4 Matings as Rees captures

[26] [12] general statement, non-convergence even 14v14
shared, here only a
[28] for canonical, [11] for equivalence

6.5 Lattès maps of type (2, 4, 4)

The notion of an orbifold, its type and its universal cover, is explained in [19, 2]. Most
types of Thurston maps g or postcritically finite rational maps f have a hyperbolic
orbifold, but there are a finite number of types with parabolic orbifold [6, 7]. These
maps are covered by affine maps on a cylinder or a torus; the latter are Lattès
maps [20, 2]. We have three examples of the former in the quadratic case: z±2 is
of type (∞, ∞) and z2 − 2 of type (2, 2, ∞). The polynomials are trivial matings
z2 ∼= z2

∐
z2 and (z2− 2) ' (z2− 2)

∐
z2, and we have the prototypical anti-mating

z−2 ∼= z2
∏
z2.

Lattès maps of type (2, 2, 2, 2) have been discussed in the previous sections.
There is only one further type in the quadratic case: the branched cover C → Ĉ
or C/Λ → Ĉ and the map L are symmetric with respect to a quarter rotation,
and triangular domains correspond to half-spheres. The rational map f has three
postcritical points, including a critical point that is the image of the other critical
point, and the orbifold type is (2, 4, 4). Maps of this type are Möbius conjugate to
f(z) = −1+2/z2 with the branch portrait 0⇒∞⇒ −1→ 1 ↑. This map does not
occur as a formal mating, but as an essential and geometric mating in cases where
the formal mating has hyperbolic orbifold:

Theorem 6.1 (Matings of essential type (2, 4, 4))
The rational map f(z) = −1 + 2/z2 of orbifold type (2, 4, 4) is a geometric mating
with f ∼= 1/4

∐
1/2, f ' 5/12

∐
1/6, and f ' 13/28

∐
3/14. These are the only

representations up to complex conjugation.

Moreover, f is given by the geometric anti-mating z2
∏

(z2 + q) with q3 = −2 [13].
Proof: We shall use similar arguments as in Section 4.2 and the same notation,

labeling critical values of the formal mating g = P t Q as p and q. Once the
essential mating g̃ is shown to have the same ramification portrait as f , they will
be combinatorially equivalent in fact, since there are only three postcritical points
and there is only one rational Möbius conjugacy class. Then the geometric and
topological matings are obtained from the Rees–Shishikura Theorem [32]. So we
must determine all P and Q, such that P 2(p) and Q(q) belong to the same fixed
ray-equivalence class:

1. If this class consists of the 0-ray, we have q = γM(1/2) = −2 = q and thus
p = γM(±1/4) ∈M±1/3 .

2. Suppose this class contains αp . If P 2(p) = αp, p must be real according to
Lemma 4.1.1, since the preperiod is k = 2. So p = γM(5/12) = γM(7/12), and
q = γM(±1/6) has the property that Q(q) shares the angle ±1/3 with αp . Now
suppose that there was another example with a longer ray connection from P 2(p)
to αp . This connection must have length two, since there is no primitive hyperbolic
component of the same ray period in the limb of p. So there is a unique primitive
component before q, such that the cycle persisting behind it shares angles with both
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P 2(p) and αp . Since there are no other points of Kq in the ray-equivalence class of
αp , this primitive cycle must contain Q(q) as well. But this contradicts Lemma 4.1.1
since the preperiod is k = 1.

3. Suppose the fixed postcritical class contains αq , then Q(q) is an endpoint
connected to αq with length two: the points cannot coincide because the preperiod
is k = 1, and there can be no primitive component of the required period before q,
which would give a longer ray connection. So P 2(p) belongs to the primitive cycle
sharing angles with Q(q) and αq , and preperiod k = 2 implies that p is real according
to Lemma 4.1.1. Now the angle of Q(q) is complex conjugate to an angle of αq and
belongs to αq in the conjugate limb. By Lemma 4.1.2a, the ray period is 3. With
q = γM(±3/14) ∈M±1/3, the angle ±3/7 of Q(q) is connected to ±4/7 of αq at the
cycle persisting from the Airplane; the parameter p = γM(13/28) = γM(15/28) is
the only one of preperiod 2 and period 3 behind the Airplane.

6.6 Algorithms and obstructions in higher degrees

flexible and obstructions both ways
[15, 16]
example of algorithm both ways

2 -1
0 2
is a topological mating of two quartic polynomials, with critical leaves
(13, 29) (9, 41) (45, 61) /64 and conj (4, 20) (25, 57) (32, 48) / 64 is obstructed and
not rational but topo. Counterexample to Theorem 3.1.1 in [23]

polynomials exist by meyer and Poirier [24]
note infinitely many with trace 4
other abstract example with real eigenvalues, t=d=5, Counterexample to Theo-

rem 3.1.2 in [23] and Theorems 0.1, 1.1 in [31]
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