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1a Motivation from a picture of S4 , courtesy Jack Milnor

These cubic polynomials f(z)

have a persistently 4-periodic

critical point. Various hyper-

bolic components can be seen

in the non-escape locus. Can

we infer their type from the

shape?

A decomposition of the Ju-

lia sets, for example by renor-

malization, is useful both for

understanding the dynamics

and topology of filled Julia

sets K, and for the structure

of parameter spaces.

https://www.math.stonybrook.edu/~jack/CMMS-print.pdf


1b Recall quadratic polynomials

For c ∈M, the critical orbit of fc(z) = z2 + c is bounded and the filled Julia

set Kc is connected. The images show the Mandelbrot setM and an example

of Kc , such that z = 0 is 12-periodic under fc .



1c Renormalization and straightening

The renormalization gc(z) = f 4c (z) : U ′c → Uc is quadratic-like and can be

straightened to another quadratic polynomial fĉ .

M contains a corresponding copyM4 of itself, with infinitely many decorations

attached.



1d Straightening of quadratic-like families

Theorems by Adrien Douady and John Hamal Hubbard:

1) Suppose that gc(z) = fnc (z) : U ′c → Uc is quadratic-like, the quasi-disks

move holomorhically for c ∈ UM , and vc − ωc winds once around 0.

Then there is a straightening map χ : Mn → M, c 7→ ĉ. Its inverse is the

tuning map ĉ 7→ c = cn ∗ ĉ .

In the satellite case, sublimbs may be treated separately.

2) For every hyperbolic component Ωn ⊂ M, there is a corresponding small

Mandelbrot set Mn , and their union is the locus of simple renormalization.

Note that to apply Theorem 1, the required domains may be constructed, for

example, as explicit disks, from asymptotic formulas, or as puzzle-pieces.



2a Two-parameter families of rational maps

While quadratic polynomials form a one-parameter family, natural two-

parameter families, which have two free critical points, are as follows:

Cubic polynomials have a superattracting fixed point at∞ and two finite crit-

ical points. Up to affine conjugation they may be parametrized, for example,

as f(z) = z3 − 3a2z + b or f(z) = A(z3 − 3z) +B .

Quadratic rational maps have two critical points. Up to Möbius conjugation

they may be parametrized, for example, as f(z) = z2+A
z2+B or f(z) = c(z+ 1

z)+d .



2b Types of hyperbolic maps and components

The Fatou components of a hyperbolic map with connected Julia set may be

mapped as follows; this is used to classify hyperbolic components as well:

A – adjacent

B – bitransitive

C – capture

D – disjoint



2c One-parameter families as one-dimensional slices

A critical relation like f 3(ω1) = f 7(ω2) defines a one-parameter subfamily of

cubic polynomials or quadratic rational maps, respectively. Here consider maps

with an n-periodic critical point:

Sn = {f(z) = z3 − 3a2z + b | z = −a is n-periodic} ,

Vn = {f(z) = z2+A
z2+B | z =∞ is n-periodic} .

S1 V2



2d Two families of even quartic polynomials

Any even quartic polynomial is a composition of two quadratic polynomials;

interchanging these gives a semiconjugate quartic polynomial. Here consider

quartic maps with a fixed critical point:

(Q ◦ P )(z) = (z2 − q2)2 + q , and

(P ◦Q)(z) = (z2 + q)2 − q2 .

The common connectedness locus is denoted by B.
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2e A model using two disjoint planes

The dynamics and combinatorics of (Q ◦ P )(z) = (z2 − q2)2 + q and

(P ◦Q)(z) = (z2 + q)2 − q2 may be described by considering

P (z) = z2 − q2 and Q(z) = z2 + q as maps between two different planes;

compare the mapping sheme according to Jack Milnor:

KQ◦P KP◦Q

P

Q

-

�

Copies of B and of these Julia sets will be seen in the following examples; since

anti-matings may be conjugated with a rotation, V2 shows (B)3 instead.

https://arxiv.org/abs/1205.2668


3a Straightening around a hyperbolic component

What small set is expected around a hyperbolic component?

Type two-parameter family Sn or Vn

Adjacent cubic connectedness locus S1

Bitransitive even quartic polynomials B
Capture {(c, z) | c ∈M, z ∈ Kc} ∼ disk

Disjoint M×M M

The two-dimensional straightening map of cubic polynomials was discussed

by Hiroyuki Inou and Jan Kiwi; it is injective and it may be discontinuous at

parabolic parameters, but the one-dimensional map shall be continuous.

Now if f in Sn or Vn has a Fatou component of type A or B, the renormalization

fnc : U ′ → U has a fixed critical point, so its straightening will be in S1 or B,

respectively. It remains to show that the renormalization locus gives all of S1

or B.

https://arxiv.org/abs/0809.1262
https://arxiv.org/abs/0903.4289


3b Example: S2

The image of S2 shows two hyperbolic components with adjacent dynamics

and two with bitransitive dynamics; actually the parametrization is a two-fold

cover of moduli space.
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3c Example: S3

In S3 there are four hyperbolic components with adjacent dynamics and eight

of bitransitive type.

6

By the way, here is a zoom video around a Misiurewicz point: [misiS3].

https://www.mndynamics.com/vids/misiS3.mp4


3d Eample: V3

Quadratic rational maps in Vn do not have hyperbolic components of adjacent

or escaping type. In V3 there are two components with bitransitive dynamics.

(The Julia sets and dynamics will be discussed later on p. 6b.)

JĴ



3e Eample: V4

In V4 there are six bitransitive hyperbolic components.

?

On the right hand side, copies of KQ◦P contain green or blue disks, while the

unique copy of KP◦Q around ∞ has red disks.



3f Example: V5

This parametrization of V5 contains the square-root of a quartic polynomial, so

there are two sheets of parameter space; both contain bitransitve components,

and some are primitive.



4a Conjectural description

For any bitransitive hyperbolic component Ω in Sn or Vn , I expect a surrounding

copy of B in parameter space.

For Vn , a big limb may be missing, and in V2 we have (B)3.

In the dynamic plane, we can find copies of KQ◦P and KP◦Q replacing Fatou

components.

What does that mean and how can we prove it?



4b Approach with renormalization

Analogously to p. 1d, we may try to construct an analytic family of quartic-like

restrictions of the first-return map, or a pair of quadratic maps.

This works well in certain cases, but in general there will be two problems:

The small Julia sets may have common boundary points; then the disks

U ′c → Uc may be hard to define or to control. In the case of Vn , there

may be infinitely many common boundary points in fact.

Even in Sn , in the primitive case, we need to know more about landing prop-

erties of external rays, to define define these disks as puzzle-pieces.



4c Approach with Thurston theory

In the postcritically finite case, we may con-

struct (or decompose) a map as follows:

Define a branched covering g : S2 → S2,

which need not be holomorphic; it shall have

the desired combinatorics of critical orbits.

Choose a homeomorphism ϕ0 : S2 → Ĉ and

pull it back with a sequence of rational maps

fn according to the commuting diagram.

Under suitable assumptions, the rational

maps converge to the desired one, and the

homeomorphisms converge up to homotopy

(relative to the marked points).

Actually, the pullback map is defined on a

Teichmüller space.

?

?

?

?
-
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ϕ1
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4d Comparison

Renormalization and straigthening Thurston theory

may be postcritically infinite mostly postcritically finite

continuous dependence on

parameters

continuity is not proved

straightening by quasi-conformal

surgery, tuning is defined as the in-

verse of straightening

both directions are possible

fairly easy theory, no numerics so

far, but combinatorial description

simple numerical implementation

Fatou components shall touch only

finitely often

Fatou components may touch

infinitely often



5a Anti-mating

Anti-mating or cross-mating f ' P
∏
Q is a special case of the previous

discussions, starting with the bitransitive component around f(z) = 1/z2 .

And it can be defined analogously to mating, starting with a formal anti-

mating P uQ and collapsing postcritical ray-equivalence classes.

When p = −q2, the resulting map is in V2 . See a phase space video

[mateK-Banti] and a deformation video [slowanti2]. Note that the big limb of

(B)3 is missing. For ∂B, this construction goes back to Vladlen Timorin.

https://www.mndynamics.com/vids/mateK-Banti.mp4
https://www.mndynamics.com/vids/slowanti2.mp4


5b Properties of anti-matings

Using a definition in terms of laminations, Davoud Ahmadi Dastjerdi has shown

that a formal anti-mating P u Q has only removable obstructions, whenever

the three fixed rays land at different fixed points. So there is a corresponding

rational map f , which is a combinatorial anti-mating and a geometric anti-

mating, with a possible exception for type (2, 2, 2, 2).

We also have the mating f 2 ' (Q ◦ P )
∐

(P ◦ Q), so why do we need anti-

matings? Staying in the quadratic family may simplify understanding the com-

binatorics and dynamics, and we may use the Levy cycle criterion. Anti-matings

without postcritical identifications, especially hyperbolic anti-matings, are char-

acterized by an anti-equator; this was shown independently by Ma Liangang.

Since the two Julia sets share all of their boundaries, anti-matings cannot

be constructed by renormalization, and only geometrically finite maps can be

treated directly with Thurston theory.

https://arxiv.org/abs/2310.04713


6a Generalizations of anti-mating

Starting from the 3-periodic bitransitive map f(z) = 1 − 1
z2 in V3 , there is a

construction analogous to anti-mating. The relevant Fatou components share

infinitely many points. Probably the only non-removable obstruction happens

when 1/3 and 2/3 land together, so B loses only one of the three big limbs.



6b Bitransitive components in V3

For the example of V3 from page 3d, the sketch shows how KP◦Q and KQ◦P

shall appear within the three periodic components.

[A deformation video is under construction.]



6c Small Multibrot sets in persistently bitransitive families

When anti-mating is performed with P (z) = z2 and Q(z) = z2+q, the relevant

polynomial connectedness locus is the Multibrot set M4 for (Q ◦ P )(z) =

z4 + q and (P ◦Q)(z) = (z2 + q)2. The resulting rational map is of the form

fa(z) = 1 + a
z2 with fa(0) =∞, and we see a copy of (M4)

3 around the outer

component of period 2. See also the approach of Pascale Roesch and Bastien

Rossetti, which uses the mating f 2a ' (Q ◦ P )
∐

(P ◦ Q) and a continuation

to the molecule along satellite components. A deformation video [slowanti0].

https://www.youtube.com/watch?v=aoLw36y-pLA
https://www.mndynamics.com/vids/slowanti0.mp4


6d Anti-mating for a persistently bitransitive family

Analogously to the discussion of V3 , other parts of parameter space can be

described by starting from the 3-periodic f(z) = 1− 1
z2 .

The images show the Julia sets for (z2)
∏

(z2 − 1) of period 4 and the gener-

alized anti-mating of period 6.

[A deformation video is under construction.]



7 Conclusion

Sn and Vn seem to contain small copies of B, and also S1 in the former case.

These are recognizable from their shapes.

Partial proofs may be based on renormalization or on Thurston theory. A com-

plete proof for all n will require a deeper understanding of the combinatorics,

for example landing properties of external rays or realizability of laminations.

The images show B again, and subsets of S3 and V5 .

Hjertelig tak !


