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Abstract

Let f be a rational function, which has k n-cycles under iteration. By using
the symmetry of the underlying equation of degree k ·n, it is reduced to equa-
tions of degree k and n. This is explained in terms of Galois theory.
The 3- and 4-cycles of fc(z) = z2 + c are obtained explicitly. This yields the
corresponding multiplier, which maps hyperbolic components of the Mandel-
brot set conformally onto the unit disk.

1 Introduction

For a rational function f : Ĉ → Ĉ, denote the n-th iterate by fn. z0 is in the

Julia set of f , if the sequence (fn(z)) is not normal in any neighborhood of z0. We

consider the family of quadratic polynomials fc(z) = z2 + c. The Mandelbrot set

M contains those parameters c ∈ C, such that the Julia set of fc is connected, and

for c /∈ M, the corresponding Julia set is a Cantor set. Since 0 is the only critical

point of the polynomial fc, c ∈M iff the orbit (fn
c (0)) is bounded [4, p. 124]. This

is used to obtain computer images of M.

A n-cycle of fc consists of distinct points z1 . . . zn with fc(z1) = z2, . . . ,

fc(zn) = z1. The corresponding multiplier is λ = fn
c
′(z1) = 2nz1 · z2 · · · zn. The cycle

is attracting, if |λ| < 1. The set of those c, such that fc has an attracting n-cycle, is

a union of components of the interior of M, which are called hyperbolic. These are

mapped conformally onto the unit disk by λ. It is well known that λ is an algebraic

function, with (λ/2)2 − λ/2 + c = 0 for n = 1 and λ = 4(c + 1) for n = 2 [12, p.

161].
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We describe an algorithm to obtain these functions for every n, and give the results

for period 3 and 4. Define the polynomials gn(z, c) recursively by

fn
c (z)− z =

∏
d|n

gd(z, c) , (1)

then the zeros of gn are the n-periodic points of fc. For n ≥ 3, the degree of gn is

at least 6. In general, only polynomial equations of degree 4 or less can be solved

explicitly, but gn satisfies the symmetry relation gn(z, c) = 0 ⇒ gn(fc(z), c) = 0,

which is used to reduce the equation. The resulting algorithm is best understood in

terms of Galois theory.

2 The cycles of fc

Except for some values of c, at which a bifurcation occurs, gn has k ·n simple zeros.

These form k n-cycles z
(j)
1 . . . z

(j)
n with fc(z

(j)
i ) = z

(j)
l , l = i+1 (mod n). This suggests

the following algorithm: Define sn(z, c, a) = z + fc(z) + . . . + fn−1
c (z) − a. Then

sn(z
(j)
i , c, a) = sn(z

(j)
l , c, a), thus a can be chosen such that the greatest common

divisor of gn and sn is of degree n (namely a = a
(j)

= z
(j)
1 + . . . + z

(j)
n ). We perform

Euklid’s algorithm with gn and sn. The remainder with degree < n must vanish.

This yields an equation hn(a, c) = 0, where hn is the g.c.d. of the coefficients of this

remainder. Denote the remainder of degree n by jn(z, c, a). It is the g.c.d. of gn

and sn, if a satisfies hn(a, c) = 0. We have applied this algorithm to g3, g4 and g5

and give the results for n = 3, 4 in the following

Theorem 1

(Netto) Determine hn and jn from the algorithm described above. The n-cycles of

fc are obtained by solving hn(a, c) = 0 for a and then jn(z, c, a) = 0 for z. This

can be done explicitly for n = 3, 4. We have

h3(a, c) = a2 + a + c + 2

j3(z, c, a) = z3 − a z2 + (−a + c− 1) z − (ac + c + 1)

h4(a, c) = a3 + (4c + 3) a + 4

j4(z, c, a) =
(
4az2 − 2a2z − a2 − a− 4

)2
− a2(a2 + 4)

(
2z − a− 1

)2
.

All of these formulas can be translated to the logistic map x 7→ A x (1− x). These

formulas have been derived a hundred years ago by Netto in [11]. He started with

the problem of finding a polynomial with a cyclic Galois group, and arrived at the

iteration of rational functions. Brown [2] has given formulas for n = 5 and n = 6,

and these questions have also been addressed in [13], [14], [8]. The method of these

authors consists of eliminations with the coefficients of the polynomials, by using

relations like ∑
i

(
z

(j)
i

)2
=

∑
i

(
z

(j)
i+1 − c

)
= a

(j) − nc , (2)
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and thus it is shown that the coefficients of jn (w.r.t. z) are rational functions of c

and a.

Our method using Euklid’s algorithm proposed above seems to be simpler and is

easily performed by Maple (see the last page). For n > 5, however, the required

memory and time grow immensely.

An equation of degree 3 can be solved with Cardano’s formula, and an equation of

degree 4 is reduced to two quadratic equations, after solving the associated cubic

resolvent. We will see in Section 4 that the Galois group of jn is cyclic. This implies

that the discriminant of j3 is a square, namely (4a2 + 6a + 9)2, and the resolvent of

j4 is reducible [10, p. 126], which has led us to the simplified form of j4 given above.

Thus solving j4(z, c, a) = 0 is reduced to

4az2 − 2a2z − a2 − a− 4 = ± a
√

a2 + 4
(
2z − a− 1

)
. (3)

3 Formulas for components of the Mandelbrot set

From jn, the multiplier λ = 2nµ with µ = z1 · z2 · · · zn is obtained by using Vieta’s

theorem. This yields

Theorem 2

(Stephenson) For a hyperbolic component H of M corresponding to attracting n-

cycles of fc, the multiplier λ : H → D1(0) is a suitable branch of kn(c, µ) = 0, where

λ = 2nµ and the polynomial kn is obtained by eliminating a from the equations

hn(a, c) = 0 and µ = (−1)n trailing coefficient (jn)

leading coefficient (jn)
.

For n = 3 and n = 4 this yields

k3(c, µ) = c3 + 2 c2 + (1− µ) c + (1− µ)2

k4(c, µ) = c6 + 3 c5 + (µ + 3) c4 + (µ + 3) c3

+ (2− µ− µ2) c2 + (1− µ)3 .

kn has been given in [13] for n = 3, 4, 5, in [14] for n = 6 and in [15] for n = 7. In

the latter case, a numerical method is used. kn has degree k with respect to µ and

degree nk/2 w.r.t. c. For n = 3 or 4, λ is obtained explicitly from c. For n = 3, c is

obtained from λ, and the boundary of the 3 corresponding hyperbolic components

of M is determined by |c + 2± c
√
−4c− 7| = 1/4. In R2, this is a curve of order

12. These formulas can be used to draw more accurate computer images of the

Mandelbrot set, and to determine, e.g., the points of bifurcation from period 3 to

period m · 3, where λm = 1.

In principle, kn can be obtained without employing the results of Theorem 1, by

eliminating z from z · fc(z) · · · fn−1
c (z) − µ = 0 and gn(z, c) = 0, but this does

not provide a simplification, since the degrees are increased and the computation

requires even more steps.
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4 The Galois group of gn

The algorithm of Theorem 1 can be understood in terms of Galois theory as follows:

The two basic ideas of Galois theory are to consider the problem of determining

the roots of a polynomial as a problem of field extensions, and to translate this to

the investigation of a finite group. Denote the field Q(c) by K and the splitting

field of gn ∈ K[z] by L. The Galois group G consists of those automorphisms

of L, which are leaving K fixed. It is represented by permutations of the zeros

of gn. For α ∈ G, we have fc(z · α) = fc(z) · α. Since fc acts on the zeros as

the permutation α0 = (z
(1)
1 . . . z

(1)
n ) . . . (z

(k)
1 . . . z

(k)
n ), G must be contained in the

centralizer of α0 in the symmetric group Skn, which is a wreath-product Sk ı Cn. We

have Sk ı Cn
∼= Sk × (Cn ⊗ . . . ⊗ Cn), where Sk is permuting the different cycles of

gn, while each Cn is acting on the elements of a unique cycle. Now the algorithm of

Section 2 corresponds to the normal series

Sk ı Cn � (Cn ⊗ . . .⊗ Cn) � . . . � Cn ⊗ Cn � Cn � 1 .

The Galois group of hn ∈ K[z] is contained in Sk, and for hn(a, c) = 0 the Galois

group of jn ∈ K(a)[z] is cyclic of order ≤ n. Thus jn = 0 can always be solved

explicitly, but hn = 0 is in general not solvable for k > 4. Up to now, we have

shown that G ≤ Sk ı Cn. In the case of n = 3 or n = 4, the formulas of Theorem 1

show that G ∼= Sk ı Cn in general, i.e. if c is transcendental, or equivalently, if Q(c)

is understood as the field of rational functions in one variable.

Theorem 3

(Bousch) The Galois Group of gn(z, c) ∈
(
C(c)

)
[z] is isomorphic to Sk ı Cn.

In [1] the manifold given by gn(z, c) = 0 is considered as a covering of the parameter

plane (with the bifurcation points removed). Bousch shows that the fundamental

group of the punctured parameter plane acts on the fibers as Sk ı Cn, and this action

is isomorphic to the Galois group of gn [6]. A similar proof is given in [9], which

extends to zd + c.

5 Summary and generalization

If f is a rational function with k n-cycles, the underlying equation of degree k · n
is reduced to one equation of degree k and k equations of degree n. The first is

solvable explicitly at least if k ≤ 4, while the latter equations are always solvable,

as Galois theory shows.

Usually, sn(z, a) = z + f(z) + . . . + fn−1(z) − a will work, but if e.g. a(1) = a(2) as

for f(z) = z2 − 4/3 with n = 5, then sn must be replaced by some higher-degree

symmetric polynomial.

If f is not a polynomial, gn and sn must be understood as the numerators of certain

rational functions. As an example, consider f(z) = z − z3−1
3z2 , which arises when
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Newton’s method is applied to z3 − 1. f has 8 3-cycles. Two of these satisfy

f(z) = e±2πi/3z, or 19z6 + 7z3 + 1 = 0, and the remaining six are obtained from

h3(a) = 256 a6 + 1296 a3 + 31941 = 0 and

j3(z, a) = (720 a3 + 1521) z3 + (−720 a4 − 1521 a) z2 + (224 a5 + 1170 a2) z

+ (−168 a3 + 3042) = 0 .
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Implementation in Maple

> readlib(factors): with(numtheory, mobius): n := 4; # adjust n !!!

> f[0] := z: for i from 1 to n do f[i] := evala(f[i-1]^2 + c) od:

> g := 1: for i from 1 to n do

> if irem(n, i) = 0 then g := g*(f[i] - z)^mobius(n/i) fi od:

> g := sort(evala(g), [z, c], plex); kn := degree(g, z)/n:

> if n <= 3 then Galois_g_z := galois(subs(c = 1, g)) fi;

> q := z - a: for i from 1 to n - 1 do q := q + f[i] od:

> q := collect(q, z): p := g:

> while degree(q, z) > n do

> r0 := collect(evala(Prem(p, q, z)), z): p := q:

> for rf in factors(r0)[2] do if degree(rf[1], z) > 0 then q := rf[1] fi od:

> od:

> r0 := collect(evala(Prem(p, q, z)), z):

> for rf in factors(r0)[2] do

> if degree(rf[1], z) = 0 and degree(collect(rf[1], a), a) = kn

> then h := rf[1] fi od:

> h := collect(h, a): lch := collect(lcoeff(h, a), c):

> if degree(lch, c) = 0 then h := collect(evala(h/lch), a) fi:

> h := sort(h, [a, c], plex);

> j := collect(evala(Prem(q, h, a)), z):

> if lcoeff(j, z) = -1 then j := -j fi: j := sort(j, [z, a, c], plex);

> u := mu*lcoeff(j, z) - (-1)^n*tcoeff(j, z):

> r0 := resultant(h, u, a):

> for rf in factors(r0)[2] do

> if degree(rf[1], mu) > 0 then k := rf[1] fi od:

> k := collect(k, c):

> if lcoeff(k, c) = -1 then k := collect(evala(-k), c) fi:

> k := sort(k, [c, mu], plex);
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