Some Explicit Formulas for the Iteration of Rational Functions

Wolf Jung

Inst. Reine Angew. Math. RWTH Aachen, D-52056 Aachen, Germany [http://www.iram.rwth-aachen.de/](http://www.iram.rwth-aachen.de/~jung)∼jung jung@iram.rwth-aachen.de

August 18, 1997.

Abstract

Let f be a rational function, which has k *n*-cycles under iteration. By using the symmetry of the underlying equation of degree $k \cdot n$, it is reduced to equations of degree k and n . This is explained in terms of Galois theory. The 3- and 4-cycles of $f_c(z) = z^2 + c$ are obtained explicitly. This yields the corresponding multiplier, which maps hyperbolic components of the Mandelbrot set conformally onto the unit disk.

1 Introduction

For a rational function $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, denote the *n*-th iterate by f^n . z_0 is in the Julia set of f, if the sequence $(f^{(n)}(z))$ is not normal in any neighborhood of z_0 . We consider the family of quadratic polynomials $f_c(z) = z^2 + c$. The Mandelbrot set M contains those parameters $c \in \mathbb{C}$, such that the Julia set of f_c is connected, and for $c \notin \mathcal{M}$, the corresponding Julia set is a Cantor set. Since 0 is the only critical point of the polynomial $f_c, c \in \mathcal{M}$ iff the orbit $(f_c^n(0))$ is bounded [\[4,](#page-4-0) p. 124]. This is used to obtain computer images of M.

A *n*-cycle of f_c consists of distinct points $z_1 \ldots z_n$ with $f_c(z_1) = z_2, \ldots$,

 $f_c(z_n) = z_1$. The corresponding multiplier is $\lambda = f_c^n$ $\zeta'(z_1) = 2^n z_1 \cdot z_2 \cdots z_n$. The cycle is attracting, if $|\lambda| < 1$. The set of those c, such that f_c has an attracting n-cycle, is a union of components of the interior of \mathcal{M} , which are called hyperbolic. These are mapped conformally onto the unit disk by λ . It is well known that λ is an algebraic function, with $(\lambda/2)^2 - \lambda/2 + c = 0$ for $n = 1$ and $\lambda = 4(c+1)$ for $n = 2$ [\[12,](#page-4-1) p. 161].

We describe an algorithm to obtain these functions for every n , and give the results for period 3 and 4. Define the polynomials $g_n(z, c)$ recursively by

$$
f_c^n(z) - z = \prod_{d|n} g_d(z, c) , \qquad (1)
$$

then the zeros of g_n are the *n*-periodic points of f_c . For $n \geq 3$, the degree of g_n is at least 6. In general, only polynomial equations of degree 4 or less can be solved explicitly, but g_n satisfies the symmetry relation $g_n(z, c) = 0 \Rightarrow g_n(f_c(z), c) = 0$, which is used to reduce the equation. The resulting algorithm is best understood in terms of Galois theory.

2 The cycles of f_c

Except for some values of c, at which a bifurcation occurs, g_n has $k \cdot n$ simple zeros. These form k *n*-cycles $z_1^{(j)}$ $\tilde{z}_1^{(j)} \ldots \tilde{z}_n^{(j)}$ with $f_c(z_i^{(j)})$ $z_l^{(j)})=z_l^{(j)}$ $l_i^{(j)}$, $l = i+1 \pmod{n}$. This suggests the following algorithm: Define $s_n(z, c, a) = z + f_c(z) + \ldots + f_c^{n-1}(z) - a$. Then $s_n(z_i^{(j)})$ $s_i^{(j)}$, c, a) = $s_n(z_l^{(j)})$ $\lambda_l^{(j)}$, c, a), thus a can be chosen such that the greatest common divisor of g_n and s_n is of degree n (namely $a = a^{(j)} = z_1^{(j)} + \ldots + z_n^{(j)}$). We perform Euklid's algorithm with g_n and s_n . The remainder with degree $\lt n$ must vanish. This yields an equation $h_n(a, c) = 0$, where h_n is the g.c.d. of the coefficients of this remainder. Denote the remainder of degree n by $j_n(z, c, a)$. It is the g.c.d. of g_n and s_n , if a satisfies $h_n(a, c) = 0$. We have applied this algorithm to g_3, g_4 and g_5 and give the results for $n = 3$, 4 in the following

Theorem 1

(Netto) Determine h_n and j_n from the algorithm described above. The n-cycles of f_c are obtained by solving $h_n(a, c) = 0$ for a and then $j_n(z, c, a) = 0$ for z. This can be done explicitly for $n = 3, 4$. We have

$$
h_3(a, c) = a^2 + a + c + 2
$$

\n
$$
j_3(z, c, a) = z^3 - a z^2 + (-a + c - 1) z - (ac + c + 1)
$$

\n
$$
h_4(a, c) = a^3 + (4c + 3) a + 4
$$

\n
$$
j_4(z, c, a) = (4az^2 - 2a^2z - a^2 - a - 4)^2 - a^2(a^2 + 4)(2z - a - 1)^2
$$
.

All of these formulas can be translated to the logistic map $x \mapsto Ax(1-x)$. These formulas have been derived a hundred years ago by Netto in [\[11\]](#page-4-2). He started with the problem of finding a polynomial with a cyclic Galois group, and arrived at the iteration of rational functions. Brown [\[2\]](#page-4-3) has given formulas for $n = 5$ and $n = 6$, and these questions have also been addressed in [\[13\]](#page-4-4), [\[14\]](#page-4-5), [\[8\]](#page-4-6). The method of these authors consists of eliminations with the coefficients of the polynomials, by using relations like

$$
\sum_{i} \left(z_i^{(j)}\right)^2 = \sum_{i} \left(z_{i+1}^{(j)} - c\right) = a^{(j)} - nc \,,\tag{2}
$$

and thus it is shown that the coefficients of j_n (w.r.t. z) are rational functions of c and a.

Our method using Euklid's algorithm proposed above seems to be simpler and is easily performed by Maple (see the last page). For $n > 5$, however, the required memory and time grow immensely.

An equation of degree 3 can be solved with Cardano's formula, and an equation of degree 4 is reduced to two quadratic equations, after solving the associated cubic resolvent. We will see in Section [4](#page-3-0) that the Galois group of j_n is cyclic. This implies that the discriminant of j_3 is a square, namely $(4a^2 + 6a + 9)^2$, and the resolvent of j_4 is reducible [\[10,](#page-4-7) p. 126], which has led us to the simplified form of j_4 given above. Thus solving $j_4(z, c, a) = 0$ is reduced to

$$
4az^{2} - 2a^{2}z - a^{2} - a - 4 = \pm a\sqrt{a^{2} + 4}\left(2z - a - 1\right).
$$
 (3)

3 Formulas for components of the Mandelbrot set

From j_n , the multiplier $\lambda = 2^n \mu$ with $\mu = z_1 \cdot z_2 \cdots z_n$ is obtained by using Vieta's theorem. This yields

Theorem 2

(Stephenson) For a hyperbolic component H of M corresponding to attracting ncycles of f_c , the multiplier $\lambda : \mathcal{H} \to D_1(0)$ is a suitable branch of $k_n(c, \mu) = 0$, where $\lambda = 2^n \mu$ and the polynomial k_n is obtained by eliminating a from the equations

$$
h_n(a, c) = 0
$$
 and $\mu = (-1)^n$ training coefficient (j_n)
leading coefficient (j_n) .

For $n = 3$ and $n = 4$ this yields

$$
k_3(c, \mu) = c^3 + 2c^2 + (1 - \mu)c + (1 - \mu)^2
$$

\n
$$
k_4(c, \mu) = c^6 + 3c^5 + (\mu + 3)c^4 + (\mu + 3)c^3
$$

\n
$$
+ (2 - \mu - \mu^2)c^2 + (1 - \mu)^3.
$$

 k_n has been given in [\[13\]](#page-4-4) for $n = 3, 4, 5$, in [\[14\]](#page-4-5) for $n = 6$ and in [\[15\]](#page-5-0) for $n = 7$. In the latter case, a numerical method is used. k_n has degree k with respect to μ and degree $nk/2$ w.r.t. c. For $n = 3$ or 4, λ is obtained explicitly from c. For $n = 3$, c is obtained from λ , and the boundary of the 3 corresponding hyperbolic components of M is determined by $|c + 2 \pm c\sqrt{-4c - 7}| = 1/4$. In \mathbb{R}^2 , this is a curve of order 12. These formulas can be used to draw more accurate computer images of the Mandelbrot set, and to determine, e.g., the points of bifurcation from period 3 to period $m \cdot 3$, where $\lambda^m = 1$.

In principle, k_n can be obtained without employing the results of Theorem [1,](#page-1-0) by eliminating z from $z \cdot f_c(z) \cdots f_c^{n-1}(z) - \mu = 0$ and $g_n(z, c) = 0$, but this does not provide a simplification, since the degrees are increased and the computation requires even more steps.

4 The Galois group of q_n

The algorithm of Theorem [1](#page-1-0) can be understood in terms of Galois theory as follows: The two basic ideas of Galois theory are to consider the problem of determining the roots of a polynomial as a problem of field extensions, and to translate this to the investigation of a finite group. Denote the field $\mathbb{Q}(c)$ by K and the splitting field of $g_n \in K[z]$ by L. The Galois group G consists of those automorphisms of L , which are leaving K fixed. It is represented by permutations of the zeros of g_n . For $\alpha \in G$, we have $f_c(z \cdot \alpha) = f_c(z) \cdot \alpha$. Since f_c acts on the zeros as the permutation $\alpha_0 = (z_1^{(1)})$ $\binom{1}{1}$... $z_n^{(1)}$) ... $\left(z_1^{(k)}\right)$ $\binom{k}{1}$... $z_n^{(k)}$, G must be contained in the centralizer of α_0 in the symmetric group S_{kn} , which is a wreath-product $S_k \, \iota \, C_n$. We have $S_k \wr C_n \cong S_k \times (C_n \otimes \ldots \otimes C_n)$, where S_k is permuting the different cycles of g_n , while each C_n is acting on the elements of a unique cycle. Now the algorithm of Section [2](#page-1-1) corresponds to the normal series

$$
S_k \wr C_n \trianglerighteq (C_n \otimes \ldots \otimes C_n) \trianglerighteq \ldots \trianglerighteq C_n \otimes C_n \trianglerighteq C_n \trianglerighteq 1.
$$

The Galois group of $h_n \in K[z]$ is contained in S_k , and for $h_n(a, c) = 0$ the Galois group of $j_n \in K(a)[z]$ is cyclic of order $\leq n$. Thus $j_n = 0$ can always be solved explicitly, but $h_n = 0$ is in general not solvable for $k > 4$. Up to now, we have shown that $G \leq S_k \wr C_n$. In the case of $n = 3$ or $n = 4$, the formulas of Theorem [1](#page-1-0) show that $G \cong S_k \wr C_n$ in general, i.e. if c is transcendental, or equivalently, if $\mathbb{Q}(c)$ is understood as the field of rational functions in one variable.

Theorem 3

(Bousch) The Galois Group of $g_n(z, c) \in (\mathbb{C}(c))[z]$ is isomorphic to $S_k \wr C_n$.

In [\[1\]](#page-4-8) the manifold given by $g_n(z, c) = 0$ is considered as a covering of the parameter plane (with the bifurcation points removed). Bousch shows that the fundamental group of the punctured parameter plane acts on the fibers as $S_k i C_n$, and this action is isomorphic to the Galois group of g_n [\[6\]](#page-4-9). A similar proof is given in [\[9\]](#page-4-10), which extends to $z^d + c$.

5 Summary and generalization

If f is a rational function with k n-cycles, the underlying equation of degree $k \cdot n$ is reduced to one equation of degree k and k equations of degree n. The first is solvable explicitly at least if $k \leq 4$, while the latter equations are always solvable, as Galois theory shows.

Usually, $s_n(z, a) = z + f(z) + ... + f^{n-1}(z) - a$ will work, but if e.g. $a^{(1)} = a^{(2)}$ as for $f(z) = z^2 - 4/3$ with $n = 5$, then s_n must be replaced by some higher-degree symmetric polynomial.

If f is not a polynomial, g_n and s_n must be understood as the numerators of certain rational functions. As an example, consider $f(z) = z - \frac{z^3-1}{3z^2}$ $\frac{x^3-1}{3z^2}$, which arises when Newton's method is applied to $z^3 - 1$. f has 8 3-cycles. Two of these satisfy $f(z) = e^{\pm 2\pi i/3}z$, or $19z^6 + 7z^3 + 1 = 0$, and the remaining six are obtained from

$$
h_3(a) = 256 a^6 + 1296 a^3 + 31941 = 0
$$
 and
\n
$$
j_3(z, a) = (720 a^3 + 1521) z^3 + (-720 a^4 - 1521 a) z^2 + (224 a^5 + 1170 a^2) z
$$

\n
$$
+ (-168 a^3 + 3042) = 0.
$$

References

- $[1]$ T. Bousch, Chapter 3 of Sur quelques problèmes de la dynamique holomorphique, Thèse, Université de Paris-Sud (1992).
- [2] A. Brown, Equations for Periodic Solutions of a Logistic Difference Equation, J. Austral. Math. Soc (Series B) 23, 78–94 (1981).
- [3] B. Branner, The Mandelbrot Set, in: Chaos and Fractals, R. L. Devaney, L. Keen eds., Proc. symp. appl. math. 39, AMS 1989.
- [4] L. Carleson and T. Gamelin, Complex Dynamics, Springer, New York 1993.
- [5] R. L. Devaney, The Complex Dynamics of Quadratic Polynomials, in: Complex Dynamical Systems. The Mathematics behind the Mandelbrot and Julia Sets, R. L. Devaney ed., Proc. symp. appl. math. 49, AMS 1994.
- [6] A. and R. Douady, Algèbre et théories galoisiennes, Paris 1977.
- [7] A. Douady, J. H. Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris 294, 123–126 (1982).
- [8] D. Giarrusso, Yu. Fisher, A Parametrization of the Period 3 Hyperbolic Components of the Mandelbrot Set, Proc. Am. Math. Soc. 123, 3731–3737 (1995).
- [9] E. Lau, D. Schleicher, Internal Addresses in the Mandelbrot Set and Irreducibility of Polynomials, IMS-preprint 94-15.
- [10] P. Morandi, Field and Galois Theory, Springer, New York 1996.
- [11] E. Netto, Vorlesungen ¨uber Algebra II, 222–227, Teubner, Leipzig (1900).
- [12] N. Steinmetz, Rational Iteration, de Gruyter, Berlin 1993.
- [13] J. Stephenson, Formulae for Cycles in the Mandelbrot Set, Physica A 177, 412–420 (1991).
- [14] J. Stephenson, D. T. Ridgway, Formulae for Cycles in the Mandelbrot Set II, Physica A 190, 104–116 (1992).

[15] J. Stephenson, Formulae for Cycles in the Mandelbrot Set III, Physica A 190, 117–129 (1992).

Implementation in Maple

```
> readlib(factors): with(numtheory, mobius): n := 4; # adjust n !!!
> f[0] := z: for i from 1 to n do f[i] := evala(f[i-1]^2 + c) od:
> g := 1: for i from 1 to n do
> if irem(n, i) = 0 then g := g*(f[i] - z)^mobius(n/i) fi od:
> g := sort(evala(g), [z, c], plex); kn := degree(g, z)/n:> if n \leq 3 then Galois_g_z := galois(subs(c = 1, g)) fi;
> q := z - a: for i from 1 to n - 1 do q := q + f[i] od:
> q := collect(q, z): p := g:> while degree(q, z) > n do
> r0 := collect(evala(Prem(p, q, z)), z): p := q:
> for rf in factors(r0)[2] do if degree(rf[1], z) > 0 then q := rf[1] fi od:
> od:
> r0 := collect(evala(Prem(p, q, z)), z):
> for rf in factors(r0)[2] do
> if degree(rf[1], z) = 0 and degree(collect(rf[1], a), a) = kn> then h := rf[1] fi od:
> h := collect(h, a): lch := collect(lcoeff(h, a), c):
> if degree(lch, c) = 0 then h := collect(evala(h/lch), a) fi:
> h := sort(h, [a, c], plex);> j := collect(evala(Prem(q, h, a)), z):
> if lcoeff(j, z) = -1 then j := -j fi: j := sort(j, [z, a, c], plex);
> u := mu*lcoeff(j, z) - (-1)^n*tcoeff(j, z):
> r0 := resultant(h, u, a):
> for rf in factors(r0)[2] do
> if degree(rf[1], mu) > 0 then k := rf[1] fi od:
> k := collect(k, c):
> if lcoeff(k, c) = -1 then k := collect(evala(-k), c) fi:
> k := sort(k, [c, mu], plex);
```