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Abstract

There is an alternative construction of mating, when at least one polynomial
is preperiodic: shift the infinite critical value of the other polynomial to a
preperiodic point.

1 Introduction

. . .
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2 Background

2.1 Polynomials and rational maps

2.2 The Thurston Theorem

2.3 A path in moduli space

The pullback of homeomorphisms ψn was easy to define, but it is not computed eas-
ily: repeated pullbacks would be defined piecewise, and solving the Beltrami equa-
tion numerically would be impractical as well. The isotopy classes in Teichmüller
space are meant to represent only combinatorial information anyway: we are inter-
ested in the pullback of marked points xi(n) ∈ π(σng ([ψ0])) and maps fn , and the
combinatorial description is needed to make a finite choice between different possi-
ble preimages. This characterization of the topology has been implemented in terms
of spiders [?, ?], medusas [?], and triangulations [?]. These contain the necessary
information from Teichmüller space without using actual homeomorphisms ψn .

Following Bartholdi–Nekrashevych [?] and Buff–Chéritat [?], the following alter-
native method shall be discussed. It means that Teichmüller space is used explicitly
only to check a suitable initialization of a path in moduli space. Afterward the path
is pulled back simply by choosing preimages from continuity. The application to
matings is discussed in Sections 7 and 8. The spider algorithm is implemented with
a path in [?] and further applications to quadratic polynomials are given; twisted
polynomials and Lattès maps are discussed in [?] as well.
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Proposition 2.1 (Path in moduli space)
Suppose g is a Thurston map of degree d ≥ 2, and there is a continuous path of

homeomorphisms ψt : Ĉ → Ĉ, 0 ≤ t ≤ 1, with ψ0 ◦ g = f0 ◦ ψ1 for a rational map
f0 . So [ψ1] = σg([ψ0]).

1. Using a suitable normalization, there is a unique path of homeomorphisms ψt ,
0 ≤ t < ∞, with ψt ◦ g = ft ◦ ψt+1 for rational maps ft , so [ψt+1] = σg([ψt]). It
projects to a continuous path π([ψt]) in moduli space. Note that σng ([ψ0]) = [ψn] for
n ∈ N.

2. Suppose that d = 2, or more generally, that g is bicritical. Normalize the marked
points xi(t) ∈ π([ψt]) such that 0 and ∞ are critical and 1 is postcritical or marked
in addition. Then the path xi(t) in moduli space is computed for 1 ≤ t < ∞ by
pulling back the initial segment continuously.

Probably the statement remains true when g is not bicritical, but the pullback
is less explicit, and I am not sure if it is unique in general. Note that [ψ1] = σg([ψ0])
and an initial path ψt is projected to moduli space. If this condition is neglected
by choosing an arbitrary path from π([ψ0]) to π([ψ1]), the pullback may correspond
not to g but to some twisted version of it. Conditions for convergence of σng ([ψ0])
are discussed in Section 2.2; in the case of a non-(2, 2, 2, 2) orbifold, convergence in
Teichmüller space is equivalent to convergence in moduli space, and in both spaces,
convergence of the sequence implies convergence of the path as t→∞. The situation
is more involved for an orbifold of type (2, 2, 2, 2). The implementation in terms of
a piecewise linear path is discussed in [?, ?].

Proof: 1. σg and π are continuous. Marked points never meet under iterated
pullback, so ψt+1 is always defined uniquely up to Möbius conjugation.

2. In this normalization, we have ft(z) = mt(z
d), and the Möbius transformation

mt is determined uniquely from the images of 0, 1, ∞ at time t. The path is pulled

back uniquely by f−1t (z) = d

√
m−1t (z), since any coordinate is either constant 0 or

∞, or the argument of the radical is never passing through 0 or ∞.

Example 2.2 (Misiurewicz polynomial mates Basilica)
The mating of the Misiurewicz polynomial P (z) = z2+i and the Basilica polynomial
Q(z) = z2 − 1 is illustrated in Figure ??. Consider the Thurston Algorithm for the
formal mating g with a path according to Initialization ?? and the radius Rt =
exp(21−t). Rescaled to ft(∞) = 1, the initialization for 0 ≤ t ≤ 1 reads

x1(t) = −i/R2
t x2(t) =

(1− i)/R2
t

1 + (1− t)e−4
x3(t) =

i/R2
t

1 + (1− t)2ie−4
. (1)

Note that the normalization x3(t) = −x1(t) is satisfied for t ≥ 1 only. For t ≥ 0 we
have the following pullback relation, and the formula for x2(t+ 1) simplifies to (??)
when t ≥ 1:

x1(t+1) = ±

√√√√x1(t)− x2(t)
1− x2(t)

x2(t+1) = ±

√√√√x1(t)− x3(t)
1− x3(t)

x3(t+1) = −x1(t+1) ,

(2)
where the sign is chosen by continuity. According to Theorem ??, the rational maps
ft converge to the rescaled geometric mating f(z) = (z2+2)/(z2−1), so x1(t)→ −2,
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x2(t)→ 2, and x3(t)→ 2. Since two postcritical points are identified, the iteration
diverges in moduli space and in Teichmüller space.

An alternative interpretation of the path reads as follows: by a standard tech-
nique from algebraic topology, the universal cover of moduli space is constructed as
the space of homotopy classes of paths with a fixed starting point. So that space
is isomorphic to Teichmüller space. In this sense, the pullback of the path is a di-
rect implementation of σg , and information on the dynamics of σg is available from
homotopy classes of paths. See Section 3.3 in [?] for an application.

Sarah Koch [?] gives criteria on g for the existence of a moduli space map from
π(σg([ψ])) to π([ψ]), which is a critically finite map in the same dimension as the
moduli space. See also Section 3.2 in [?]. Then the path may be chosen within
the Julia set of the moduli space map, which is easily visualized when it is one-
dimensional [?]. This happens for a NET map, which has four postcritical points
and only simple critical points [?]. In the quadratic case of NET maps, a moduli
space map exists if at least one critical point is postcritical, and not when g is a
Lattès map of type (2, 2, 2, 2).

Example 2.3 (Obstructed self-mating)
For the self-mating of the Basilica polynomial P (z) = Q(z) = z2 − 1, consider
the radius Rt = exp(21−t) again, and Initialization ?? reads x1(t) = −1/Rt for
0 ≤ t ≤ 1. The normalization is symmetric under inversion, and the pullback

relation x1(t + 1) = −
√
−x1(t) has an explicit solution in this case, which is given

by x1(t) = −1/Rt for 0 ≤ t <∞. So x1(t)→ −1 as t→∞, and the rational maps
ft(z) = (z2 + x1(t))/(1 + x1(t)z

2) degenerate to a constant map. Note that there

is a moduli space map x1(t) = −
(
x1(t + 1)

)2
, and for a different initialization, the

path would be contained in the unit circle.

3 The Thurston Algorithm for quadratic polyno-

mials

normalization, 0 marked, asymptotics, Thurston matrix and renormalization, Hub-
bard tree, twisted, recapture and internal addresses

4 The spider algorithm

In [?], the Thurston Algorithm with a path in moduli space is implemented for
quadratic polynomials, including the spider algorithm, twisted polynomials, precap-
ture and recapture, and slow tuning. This section sketches the discussion of the
spider algorithm, because it is another application of the convergence Theorem ??;
in fact it was the original motivation for this research.

For an angle θ ∈ Q \Z, we want to determine the associated postcritically finite
parameter c of a quadratic polynomial fc(z) = z2 + c. From θ a Thurston map gθ
is constructed, and the Thurston Algorithm shall give fc . Denote the iterates of
θ = θ1 by θi = 2i−1θ, i ≥ 1, and the preperiod and period of θ is k and p. Consider
the map gθ = ϕθ ◦ F with F (z) = z2. Here the homeomorphism ϕθ is the identity
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in most of Ĉ; it shifts the straight ray with angle θ1 radially out by 1, and if k = 0,

it shifts the ray with angle θp in by 1. So ϕθ(0) = ei2πθ1 , and in the periodic case
ϕθ(e

i2πθp) = 0. The straight spider is invariant under gθ .
To apply the Thurston Algorithm, we need to pull back marked points xi(n) with

quadratic polynomials. The choice of branch for the square roots is determined by
the pullback of an isotopy class of homeomorphisms. The basic idea of the spider
algorithm is: Teichmüller space is represented by spiders, homotopy classes of
graphs with legs from ∞ to the marked points, which are pulled back with the
polynomials. According to [?, ?, ?] we may consider these cases:

Case 1: The angle θ is periodic and c is the center associated to the root γM(θ).
Then gθ is combinatorially equivalent to fc and unobstructed. Under the
equivalence, the spider legs are homotopic to external rays extended by internal
rays, which will have common points in the satellite case.

Case 2: The angle θ is preperiodic and the Misiurewicz point c = γM(θ) is an
endpoint or of primitive type. Again, gθ is unobstructed and equivalent to fc .
The spider legs correspond to external rays at the postcritical orbit.

Case 3: The Misiurewicz point c = γM(θ) is of satellite type; the angle θk+1 has
period p = rq and the landing point has period q < p. Now gθ has a Lévy cycle
with q curves, each containing r marked points. By identifying these points
manually, or by extending the spider legs accordingly, a modified Thurston
map g̃θ is defined; it is unobstructed and combinatorially equivalent to fc .

See [?] for a convergence proof in the periodic case, which replaces Teichmüller space
with a more explicit spider space. The essential spider map g̃θ is constructed in [?],
and the relation between obstructions, kneading sequences, and the satellite case
is obtained in [?]. Note that the description above assumes landing properties of
parameter rays according to [?, ?], and the spider algorithm is just a method to
compute parameters numerically. Alternatively, one may discuss the spider map gθ
directly and conclude the existence of quadratic polynomials with specific combina-
torics. There are several variants of implementing the spider algorithm:

• In a pullback step, each leg and endpoint has two preimages under the
quadratic polynomial, or the preimage is the critical point with two legs. To
choose unique preimages, either employ the cyclic order of rays at ∞, which
is related to intersection numbers, or consider the angles of the legs at ∞.

• Either normalize the position of two finite marked points, or assume that
all polynomials are of the form z2 + cn . This increases the dimension of
Teichmüller space by one and gives an additional eigenvalue λ = 1/2.

• Each leg is encoded as a sequence of points, such that the curve is homotopic
to a polygonal curve with respect to the marked points. Since the preimages
of straight lines are hyperbolas in general, this means that each hyperbola
segment is replaced with a line segment again; we must check that it is ho-
motopic. When this condition is violated in the current step for one or more
segments, we may either refine the discretization there (and prune somewhere
else), or restart with an overall finer discretization.
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In the satellite Misiurewicz case 3, Hubbard–Schleicher [?] observed that colliding
marked points converge to postcritical points of fc and the polynomials converge to
fc . To understand this process in general, Selinger [?, ?] considered the extension
of the Thurston pullback to augmented Teichmüller space and the dynamics on the
canonical stratum. This phenomenon motivated the research for the convergence
Theorem ?? as well. Intuitively, the points must collide because the unique obstruc-
tion is pinched, and since they stay close together while moving, the pullback of gθ
shall be similar to the pullback defined by g̃θ or fc . But this description involves
interchanging limits, so it is not obvious that the marked points get close to the
expected limit and do not jump away.

Theorem 4.1 (following Hubbard–Schleicher and Selinger)
For the pullback defined by the unmodified spider map gθ , the polynomials converge
to fc and the marked points converge to postcritical points, with suitable collisions
in the satellite Misiurewicz case 3.

Proof: According to the references given above, either gθ or g̃θ is unobstructed
and equivalent to fc In case 3, the Thurston pullback for gθ diverges due to the
Lévy cycle. The essential map g̃θ is equivalent to fc and the other component maps
are homeomorphisms. So Theorem ?? applies and gives convergence immediately.

Recall the following steps of its proof. In the context of Proposition ?? the
current situation was called scenario 2: the pullback in configuration space extends
to a neighborhood of the prospective limit. The eigenvalues either come from the
modified Thurston pullback, or they are of the form λrq = ρ−r, λq 6= ρ−1, where
ρ is the repelling multiplier of the q-cycle of fc . The techniques of Selinger show
that the points in configuration space get arbitrarily close to the prospective limit,
such that a segment of an invariant path in Teichmüller space projects into an
attracting neighborhood of that configuration. Then it cannot happen that at some
step another branch of the pullback relation becomes active, so the points do not
jump away.

In contrast to the situation of formal matings, this generalized convergence prop-
erty is not crucial from a numerical perspective, since the modification from gθ to
g̃θ is simple and explicit. As a completely different approach, the parameter c may
be obtained by drawing the parameter ray RM(θ) and starting a Newton iteration
from the approximate endpoint. Now, let us consider an alternative implementation
of the spider algorithm, which pulls back a path in moduli space instead of spiders
in Teichmüller space. So the legs are invisible, but the movement of the feet is
recorded:

Initialization 4.2 (Spider algorithm with a path)
Suppose θ = θ1 ∈ Q/Z has preperiod k and period p. Define (x1(t), . . . , xk+p(t)) for
0 ≤ t ≤ 1 as

x1(t) = t · ei2πθ1

xp(t) = (1− t) · ei2πθp , if k = 0 (3)

xj(t) = ei2πθj , otherwise.

Pull this path back continuously with xi(t + 1) = ±
√
xi+1(t)− x1(t). Then it con-

verges to the marked points of fc with appropriate collisions.
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Proof: The argument is similar to that given for captures and precaptures
according to Initialization 5.2, and for twisted maps according to Examples 3.1
and 3.7 in [?]. We may initialize the Thurston pullback for gθ = ϕθ ◦F by ψ0 = ϕ−1θ
and ψ1 = Id. There is an obvious deformation ψt along one or two rays, which
projects to the path defined in moduli space. By Proposition 2.1, this shows that
the pullback of the path agrees with the projection of the pullback in Teichmüller
space. Note that for k = 0, we have xp(t) = 0 only for t ≥ 1. Likewise, for k = 1
the relation xk+p(t) = −xk(t) is satisfied for t ≥ 1 only.

This algorithm gives the same marked points as the spider algorithm with legs,
and it converges unless there are floating-point cancellations or problems with the
discretization: again, the path is represented by a polygonal curve, and there is an
explicit check for homotopy violations by the simultaneous deformation of hyperbola
segments to line segments; if that happens, refine or restart. Since only a path of
length |n ≤ t ≤ n+1| = 1 needs to be stored instead of full legs, we may take a large
number of line segments easily, but there is a trade-off: there will be little need for
refinement, because small hyperbola segments are close to small line segments, but
there is a loss of precision by subtracting numbers that are approximately equal.

For exponential functions with preperiodic singular value, spiders and modified
spiders are constructed in [SZ, LSV], and convergence of unobstructed pullback maps
follows from [HSS]. The alternative implementation with a path in moduli space is
straightforward, but a check for homotopy violations will be harder. Examples show
convergence of colliding marked points analogously to Theorem 4.1. While the local
analysis at the prospective limit is the same, the extension to augmented Teichmüller
space is unknown and so the global analysis is incomplete.

[HSS] J. Hubbard, D. Schleicher, M. Shishikura, Exponential Thurston maps and limits
of quadratic differentials, J. AMS 22, 77–117 (2009).

[LSV] B. Laubner, D. Schleicher, V. Vicol, A Combinatorial Classification of Postsingularly
Finite Complex Exponential Maps, Discrete Cont. Dyn. Systems 22, 2008.

[SZ] D. Schleicher, J. Zimmer, Periodic points and dynamic rays of exponential maps,
Ann. Acad. Scient. Fenn. 28, 327–354 (2003).

5 Captures and encaptures

Captures and encaptures are ways to construct a Thurston map by shifting a critical value
to a preperiodic point; we shall see that encaptures are related to matings with preperiodic
polynomials in fact.
Add remarks on implementation and convergence.

These constructions rely on the concept of shifting or pushing a point from a to b along
an arc C. This means that a homeomorphism ϕ is chosen, which is the identity outside
off a tubular neighborhood of C, and such that ϕ(a) = b. So an unspecified point close to
a is mapped to a and b is mapped to an arbitrary point nearby.

Proposition 5.1 (and definition)
Suppose P is a postcritically finite quadratic polynomial and z1 ∈ Kp is preperiodic and
not postcritical. Let the new postcritical set be Pg = PP ∪ {Pn(z1) |n ≥ 0}. Consider
an arc C from ∞ to z1 not meeting another point in Pg and choose a homeomorphism ϕ
shifting ∞ to z1 along C, which is the identity outside off a sufficiently small neighborhood
of C. Then:
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• g = ϕ ◦ P is well-defined as a quadratic Thurston map with postcritical set Pg . It is a
capture if z1 is eventually attracting and an encapture in the repelling case.

• The combinatorial equivalence class of g depends only on P and on the homotopy class
of the arc C.

Proof: By construction, g is a postcritically finite branched cover, when the neighbor-
hood of C does not include any postcritical point except z1 . Note that the preimages of
z1 under P are mapped to some arbitrary point by g, so if z1 was periodic or postcritical,
g would not be well-defined. Finally, if we have two different homeomorphisms ϕ and ϕ′

along the same curve or along two homotopic curves, then g′ = (ϕ′ ◦ ϕ−1) ◦ g and the
homeomorphism ϕ′ ◦ ϕ−1 is isotopic to the identity, since the appended path C ′ · C−1 is
contractible relative to Pg \ {z1}.

Consider the following applications and possible generalizations:

• If a capture g = ϕ ◦ P is combinatorially equivalent to a rational map f , this gives
a hyperbolic map of capture type. Let us say that f is a Wittner capture, if the
capture path C is homotopic to a rational external ray followed by an internal ray
of P ; this construction is due to Ben Wittner [?] and Mary Rees [?]. Note that Rees
denotes only Wittner captures as captures, while general captures are called maps
of type III. Maps of this type are never matings, but they may have a representation
as an anti-mating [?].

• Encaptures along external rays are related to matings in the following Section 6.

• Encaptures apply not only to polynomials P , but to rational maps in general as long
as the other critical orbits are finite. This construction provides a finite regluing
followed by a possible combinatorial equivalence. In a more general situation, a
countable regluing is followed by a semi-conjugation [?, ?].

• Recapture means that the finite critical value P (0) is shifted to a preimage of 0,
resulting in a Thurston map equivalent to a hyperbolic polynomial. Relations to
internal addresses and to Dehn twisted maps are discussed in [?].

Initialization 5.2 (Captures and encaptures)
Consider a capture or encapture g = ϕ◦P according to Proposition 5.1. Then the Thurston
Algorithm is implemented by pulling back a path in moduli space, which is initialized as
follows: normalize P such that the critical points are 0, ∞ and another point in Pg \ {z1}
is 1. For 0 ≤ t ≤ 1, x1(t) moves from ∞ to z1 along C, while all of the other marked
points stay fixed.

Under a non-conjugate-limbs condition, Wittner captures are unobstructed [?] and
encaptures along external rays have only obstructions satisfying the assumptions of Theo-
rem ??; see below. So the sequence of rational maps converges to a rational map f , unless
the orbifold of f is of type (2, 2, 2, 2): then the sequence does not converge in general,
but it might converge for a special choice of C.

Proof: Note that when the preperiod of z1 is one, the corresponding periodic point
satisfies ψt(−z1) = −x1(t) only for t ≥ 1. Since ϕ−1 ◦ g = P ◦ Id and P is holomorphic,
we have [Id] = σg([ϕ

−1]) and we may initialize the Thurston Algorithm with a path ψt
from ψ0 = ϕ−1 to ψ1 = Id. Now ϕ±1 is the identity outside off a small neighborhood of
C, so ψt can be chosen such that it moves x1(t) = ψt(z1) from ϕ−1(z1) = ∞ to z1 along
C, and leaves the other marked points untouched. By Proposition 2.1 the projection from
T toM defines a suitable initialization to compute the Thurston pullback π(σng ) from an
explicit pullback in moduli space.
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6 Encaptures and matings

The representation of matings by encaptures along external rays is motivated by remarks
in [?, ?]. In the former paper, the boundary of a capture component in Vn is described
by matings, which are related to the postcritically finite map of capture type by regluing.
This means that the critical value is shifted from ∞ along an external ray followed by an
internal ray, and then moved back along an internal ray. So can the mating be constructed
by shifting the critical value directly from ∞ to z1 = γp(θ) along the external ray Rp(θ) ?
This is true in general when z1 is preperiodic, not only when it is on the boundary of a
hyperbolic component, but we shall not discuss postcritically infinite maps here.

Theorem 6.1 (Matings as encaptures)
Suppose P is postcritically finite and θ is preperiodic, such that q = γM(−θ) is not in the
conjugate limb and z1 = γp(θ) ∈ ∂Kp is not postcritical. Then the encapture gθ = ϕθ ◦ P
along Rp(θ) is combinatorially equivalent or essentially equivalent to the geometric mating
f defined by P

∐
Q.

So if P
∐
Q is not of type (2, 2, 2, 2), any implementation of the Thurston pullback

for gθ gives a converging sequence of rational maps; e.g., Initialization 5.2 applies. The
normalization βp = 1 ensures f(1) = 1. Note that the encapture does not work if both
P and Q are hyperbolic; then there is an alternative construction with two paths [?].
When only one of the two polynomials is hyperbolic, then either P

∐
Q or Q

∐
P is an

encapture. And when both are critically preperiodic, then both P
∐
Q and Q

∐
P are

encaptures, unless a critical point is iterated to the other critical point: then ∞ shall
be iterated to 0. — By choosing encaptures along homotopic external rays, examples of
shared matings are obtained in [?].

Recall the notation g and g̃ for the formal mating and the essential mating; we shall
see below that there is an essential encapture g̃θ as well. Before showing g̃θ ∼ g̃ let us
consider a few examples, to see how identifications happen and why they may happen in
different ways for g and gθ :

• When g = 9/56 t 1/4, so θ = 3/4, there are no postcritical identifications: g̃ = g
and g̃θ = gθ . The encapture can be constructed from the formal mating by shifting
all postcritical points in ϕ∞(Kq) to ϕ0(Kp) along external rays, so gθ and g are
combinatorially equivalent.

• In reverse order we have g̃ = g = 1/4 t 9/56 again, but g̃θ 6= gθ for θ = 47/56 and
p = γM(1/4). Now gθ(∞) has preperiod and period three, but g̃θ(∞) has period
one. The shift ϕθ creates a subset of the lamination with angle θ in the exterior
of Kp , so there is a triangle connecting 3/7, 5/7, 6/7 with a homotopic preimage
under gθ ; pinching the surrounding Lévy-cycle gives g̃θ .

• The converse happens for g = 1/4 t 3/14, so p = γM(1/4) and θ = 11/14. Now
both q = γM(3/14) and g(∞) have preperiod one and period three, while g̃ 6= g
has period one. But this identification is immediate in the encapture gθ = g̃θ , since
z1 = −αp .

• Both phenomena happen at the same time for g = 3/14t 3/14, so θ = 11/14. In gθ
the 3-cycle of P is collapsed by a triangle in the exterior, while the 3-cycle of Q is
identified with αp immediately. We have g̃θ 6= gθ 6∼ g 6= g̃.

For longer ray connections, there may be a similar splitting of branch points and similar
immediate identifications, but otherwise the encapture can be understood in terms of the
same ray-equivalence classes as the formal mating:
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Proof of Theorem 6.1: Denote by X the union of all postcritical ray-equivalence
classes of the formal mating g = P t Q. Define another Thurston map gθ by shifting
the critical value ϕ∞(q) to ϕ0(z1) along Rθ , without modifying g on X. Consider the
extended Hubbard tree Tp ⊂ Kp , which consists of regular arcs connecting the postcritical
points of gθ . Then gθ : T ′p → Tp , where T ′p = Tp except for a slight detour at P−1(0).

We may assume that gθ ◦ ϕ0 = ϕ0 ◦ gθ in a neighborhood of Tp . So the two maps are
combinatorially equivalent, even if we mark the critical point∞ in addition, since all other
marked points are contained in Tp and Tp is connected.

Now consider a path of Thurston maps gt , such that postcritical points of P stay fixed
in ϕ0(∂Kp) and all postcritical points of Q move from ϕ∞(∂Kq) to ϕ0(∂Kp) along external
rays of g. This deformation is a kind of two-sided pseudo-isotopy from g to gθ, since
marked points may collapse in different ways on both ends, while each component of X
is invariant under each gt . By collapsing all components of X to points and modification
at preimages, equivalent quotient maps are obtained for all gt , in particular for g and gθ,
where postcritical points have been identified already in different ways. So we know that
g̃θ = g̃ ∼ f and we may consider g̃θ as an essential map in the sense of Definition ??,
with Γ consisting of loops around those trees in X, which contain at least two postcritical
points of gθ. So gθ is essentially equivalent to f , combinatorially equivalent if Γ = ∅, and
the same applies to the original encapture gθ .

7 Matings on the boundary of capture compo-

nents

. . .

8 Visualization of captures and encaptures

To illustrate the process of slow capture or encapture, we may also define a sequence or
path of images ψt(Kp) of the filled Julia set, which is constant Kp for 0 ≤ t ≤ 1. It will
show more and more identifications happening by a piecewise pseudo-isotopy. See also the
videos on www.mndynamics.com . A similar initialization is used for Dehn twisted maps;
see [?] and the Examples 3.1 and 3.7 in [?].
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