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Abstract

. . . based on Ahmadi Dastjerdi, Timorin, Meyer.

1 Introduction

complex dynamics means iteration of polynomials and rational maps
related by matings and captures, mating glues quadratic Julia sets
equator and anti-equator observed
no f : Kp to Kq
blaschke? poly? idea two planes, gives quartic Julia sets. notation
here construction based on gluing quartic Julia sets mapped to each other
parallel description mating and anti-mating to emphasize similar notions and

techniques
mention formal essential topological geometric combinatorial, alternatively with

laminations
remark notation does not mean intersection
in Sections: pcf Thurston, results on existence and also equators: but preper

more general
several examples and discussion of special families
naming and history: called cross-mating in an earlier version of [40], which has

the advantage of no confusion with anti-holomorphic matings.
[31, 1], lamination Ahmadi Dastjerdi, anti-eq Meyer [4, 24], Timorin laminations

and blaschke and regluing cf encapture, neither toplogical, straightening Inou–Kiwi.
So here the existence result is the same as [1], with formal mating instead of lam-

inations. New: glue quartics, Lattès, many examples and special families, Hausdorff
obstruction, numerics, equator.

While the simplest mating is f(z) = z2, the prototypical anti-mating is given by
f(z) = z−2. Anti-mating is understood by gluing two filled Julia sets, which are mapped
to each other by f . The notion of an anti-equator and pseudo-anti-equator was suggested
by Daniel Meyer [4, 24]. Vladlen Timorin has defined the formal anti-mating, and
suggested a definition in terms of laminations in addition [40]. This definition goes back
to the thesis [1] of Davood Ahmadi Dastjerdi.

The basic idea is that the formal anti-mating g = P u Q and the topological anti-
mating P

∏
Q are quadratic maps, but the topology and dynamics is understood from

the quartic polynomials Q ◦ P and P ◦Q. Except in the symmetric case of P = Q, the
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Figure 1: The mating of Kokopelli and Basilica gives a quadratic rational map f , such

that z = 0 is 4-periodic and z =∞ is 2-periodic. Left: formal mating, middle: Thurston

iteration, right: geometric mating. The same map f is obtained as an anti-mating in

Figure 2. See also Example 2.2.

quadratic dynamics of P (z) = z2 + p and Q(z) = z2 + q will be irrelevant. It turns out
that the anti-matings with p = 0 belong to the bitransitive family, while p = −q2 gives
the critically 2-periodic family V2 [40]. See also the videos on www.mndynamics.com .

Figure 2: An anti-mating giving the same quadratic rational map f as in Figure 1,

z = 0 is 4-periodic and z =∞ is 2-periodic. Since the two quartic polynomials are semi-

conjugate, the Julia sets show similar features: each seems to contain parts of the other.

The 4-periodic basins appear more round and the 2-periodic basins show prominent cusps.

Left: formal anti-mating, middle: Thurston iteration, right: geometric anti-mating. See

Figure 5 for the parameter spaces.
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Chéritat, Sarah Koch, Kathryn Lindsey, Daniel Meyer, Carsten Petersen, Pascale
Roesch, Tom Sharland, and Vladlen Timorin. And special thanks to Mary Rees and
Lasse Rempe for providing a copy of [1] on short notice.

2 Definitions and basic properties

Formal matings and anti-matings, as well as corresponding rational maps, are de-
fined and discussed in Sections 2.2–2.5. While the formal (anti-)mating is never
conjugate to a rational map, it forms a good starting point for the construction
of rational maps with desired dynamic or topological properties: the combinatorial
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and geometric (anti-)matings. An implementation of the Thurston algorithm [7] is
described briefly in Section 2.6.

2.1 Polynomial and rational dynamics

f and K and M, limb closed by adding root, Basilica Airplane Rabbit Kokopelli, Boettcher,
unit disk D, rays, doubling, pinching points and branch points, M limbs and what for
higher degree?, rational two crpt, branch portrait and types hyperbolic in Section 2.5

2.2 Formal mating and anti-mating

The formal mating or formal anti-mating is a map g : Ĉ → Ĉ on the Riemann
sphere, which combines the dynamics of polynomials P : C → C and Q : C → C.
To identify the two planes with hemispheres, the homeomorphisms ϕ0 : C→ D and
ϕ∞ : C→ Ĉ \D shall be used; any map with the same asymptotics at ∞ would do:

ϕ(z) =
z√
|z|2 + 1

and ϕ∞(z) = 1/ϕ0(z) . (1)

Definition 2.1 (Formal mating and anti-mating)
The formal mating or formal anti-mating g : Ĉ → Ĉ of two quadratic polynomials
P (z) = z2+p and Q(z) = z2+q is defined on the southern and northern hemispheres
in terms of ϕ0 : C→ D and ϕ∞ : C→ Ĉ \ D according to (1):

1. If the quadratic Julia sets KP and KQ are locally connected, define the formal
mating g = P tQ as

P tQ(z) =


ϕ0 ◦ P ◦ ϕ−10 (z) , z ∈ D
z2 , z ∈ ∂D
ϕ∞ ◦Q ◦ ϕ−1∞ (z) , z ∈ Ĉ \ D

(2)

For an angle θ ∈ S1, the external ray of g is defined as

Rg(θ) = ϕ0(RP (θ)) ∪ {exp(i2πθ)} ∪ ϕ∞(RQ(−θ)) . (3)

Now g maps Rg(θ) to Rg(2θ).

2. If the quartic Julia sets KQP and thus KPQ are locally connected, define the formal
anti-mating g = P uQ as

P uQ(z) =


ϕ∞ ◦ P ◦ ϕ−10 (z) , z ∈ D
z−2 , z ∈ ∂D
ϕ0 ◦Q ◦ ϕ−1∞ (z) , z ∈ Ĉ \ D

(4)

For an angle θ ∈ S1, the external ray of g is defined as

Rg(θ) = ϕ0(RQP (θ)) ∪ {exp(i2πθ)} ∪ ϕ∞(RPQ(−θ)) . (5)

So g maps Rg(θ) to Rg(−2θ), reversing its direction relative to the equator ∂D.

Now g : Ĉ → Ĉ is a smooth branched cover with critical points 0 and ∞, and
a distinguished fixed point at 1. Although the same notation of P (z) = z2 + p and
Q(z) = z2 + q is used in both cases, the dynamic meaning for gn is quite different:
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• In the context of a mating, the quadratic dynamics of P n and Qn is relevant.
g = P tQ maps each of the quadratic Julia sets ϕ0(KP ) and ϕ∞(KQ) to itself.

• For the anti-mating g = P u Q, the quadratic dynamics of P n and Qn is
irrelevant. g maps each of the quartic Julia sets ϕ0(KQP ) and ϕ∞(KPQ) to the
other one. Note also that the iterate (P uQ)2 = (Q ◦P )t (P ◦Q) is a quartic
mating.

In the annulus between the filled Julia sets, every orbit escapes to the equator. The
dynamics of the anti-mating may be postcritically finite, e.g., if p and q are not
within the Mandelbrot set; even if they are, the dynamics of Q ◦ P and P ◦ Q will
be unrelated to that of P and Q in general. The associativity of composition,

P ◦ (Q ◦ P ) = (P ◦Q) ◦ P and Q ◦ (P ◦Q) = (Q ◦ P ) ◦Q , (6)

means that the quartic polynomials are semi-conjugate in both directions; for this
reason we have P : KQP → KPQ and Q : KPQ → KQP [1]. Moreover, these quadratic
polynomials are conjugate to z 7→ z2 in the exterior, doubling the angles of quartic
external rays according to P : RQP (θ)→ RPQ(2θ) and Q : RPQ(θ)→ RQP (2θ) . —
These concepts are explained in greater detail in the following Section 2.3:

2.3 Dynamics and normalizations of the formal anti-mating

A formal mating P tQ maps each hemisphere to itself, so on a first glance, we may
choose two kinds of dynamics independently of each other. On a second glance, ray
connections must be taken into account, which determine whether the geometric
mating exists, and how the dynamics is modified by identifications.

For a formal anti-mating g = P uQ, already the first step is more involved. The
dynamics of g is understood from the following toy model ĝ, which is conjugate to
g on Ĉ \ ∂D:

• Consider the disjoint union CS ] CN of two copies of C.

• Given two quadratic polynomials P : C→ C and Q : C→ C, define a self-map
ĝ of CS ] CN by P : CS → CN and Q : CN → CS .

• The dynamics of ĝ may be conjugated with the disjoint union of two affine
maps, s : CS → CS and n : CN → CN . This gives new quadratic polynomials
P̃ = n ◦ P ◦ s−1 and Q̃ = s ◦Q ◦ n−1 according to the commuting diagrams:

(7)
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• The normal form P (z) = z2 + p and Q(z) = z2 + q is obtained by appropriate
affine conjugations in the sense of this diagram: the critical points are shifted
to 0, and then polynomials can be made monic by suitable rescalings. The
formulas show that there are three pairs of monic polynomials, such that the
toy models ĝ are affine conjugate: with ζ a cubic root of unity, we may replace
p → ζp and q → ζ−1q. Then the formal anti-mating g will be rotated with ζ
as well; the combinatorial and geometric anti-matings according to Section 2.4
will be rescaled linearly, such that another fixed point is normalized to 1.

Now we want to study the dynamics of ĝ, the behavior of points in CS ] CN under
iteration ĝn. If, e.g., z ∈ CS , the sequence of iterates ĝn(z) alternates between both
planes as follows: ĝ2k(z) = (Q ◦ P )k(z) ∈ CS and ĝ2k+1(z) = P ◦ (Q ◦ P )k(z) ∈ CN .
And vice versa for z ∈ CN ; see also (9). Notions like periodic points, critical points,
postcritical finiteness, escaping set, and filled Julia set of ĝ are understood with
respect to this alternating kind of iteration. — Recall the semi-conjugations

P ◦ (Q ◦ P )n = (P ◦Q)n ◦ P and Q ◦ (P ◦Q)n = (Q ◦ P )n ◦Q . (8)

• ĝ has two critical points, 0 ∈ CS and 0 ∈ CN . The two critical orbits need
not be disjoint.

• The filled Julia set Kĝ is the disjoint union of KQP ⊂ CS and KPQ ⊂ CN . By
the semi-conjugations in (6) or (8) we have P : KQP → KPQ and Q : KPQ →
KQP , so ĝ : Kĝ → Kĝ. This is Lemma 5.14.4 in [1].

• Now KQP and KPQ are connected, if and only if both critical orbits of ĝ
are bounded. They are locally connected especially, if the critical orbits are
finite. — These statements correspond to standard results on polynomial
dynamics [28]. Note here that Q ◦ P has two critical orbits, (Q ◦ P )n(0) and
(Q ◦ P )n(±

√
−p), but the latter is just Q ◦ (P ◦Q)n−1(0).

• Then we have the quartic Boettcher maps ΦQP : ĈS \ KQP → Ĉ \ D and

ΦPQ : ĈN \KPQ → Ĉ \D, which conjugate the quartic polynomials to z 7→ z4.
These maps are determined uniquely from the condition Φ∗(z) ∼ z as z →∞.
External rays are preimages of straight rays under the respective Boettcher
conjugation.

• Now ΦPQ ◦ P ◦ Φ−1QP : Ĉ \ D → Ĉ \ D equals z 7→ z2, since it is a Blaschke
product and it is asymptotic to z2 at ∞. Therefore P maps rays to rays,
doubling the angle: RQP (θ) 7→ RPQ(2θ), and analogously for Q.

• Angles are complex conjugated, when CN is mapped to the northern hemi-
sphere with ϕ∞ , so the external rays Rg(θ) of g according to Definition 2.1
are connected arcs. They are represented in the toy model by Rĝ(θ) =
RQP (θ) ] RPQ(−θ). Now ĝ maps this ray to Q(RPQ(−θ)) ] P (RQP (θ)) =
RQP (−2θ) ]RPQ(2θ) = Rĝ(−2θ).

The normalization of P and Q serves not only to simplify the formulas of the polyno-
mials and the normalization of the Boettcher conjugation — it determines implicitly,
how the two hemispheres connect to form a sphere. Let us compare this to the mat-
ing of two arbitrary quartic polynomials: for each of these, there are three choices
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of a Boettcher conjugation, or three choices, which of the fixed rays has angle θ = 0.
So there are nine different formal matings, and three different matings up to a com-
mon rotation: the formal mating is rotated when one polynomial is rotated with ζ
and the other one with ζ−1. Other kinds of rotations give different matings, which
may be described by Dehn twists about the equator as well [3]. Returning to our
quadratic anti-matings, the three rays with angles θ = 0, 1/3, 2/3 will be fixed by
the formal anti-mating. g is conjugated with a rotation by replacing p → ζp and
q → ζ−1q at the same time, with ζ a cubic root of unity. Any other rotation would
change the dynamics randomly, maybe producing disconnected Julia sets.

The alternating critical orbits of ĝ may be visualized as follows, with CN in the
top row and CS in the bottom. This diagram is a good starting point to construct
explicit examples:

(9)

Example 2.2 (Disjoint cycles of periods 4 and 2)
To determine quadratic rational maps f , such that the critical point 0 is 4-periodic

and ∞ is 2-periodic, consider f(z) = fb(z) = z2+b
z2−1 according to Section 6: then

∞ ⇒ 1 → ∞ and 0 ⇒ −b → b
b−1 → . . .. Setting f 4

b (0) = 0 gives a polynomial
equation for the parameter, b(b + 1)(b4 − 3b3 + 6b2 − 4b + 1) = 0. Here b = 0
corresponds to period 1 and b = −1 does not define a quadratic rational map, but
the four complex solutions are meaningful.

To determine matings with the same branch portrait, we need P tQ such that
P is 4-periodic and Q is 2-periodic, so Q(z) = z2 − 1. The equation P 4(0) = 0
gives four real and four complex parameters. All of the real solutions have lower
periods or the mating is obstructed, so only four matings remain; these give four
distinct rational maps, and all maps from the previous paragraph are realized as
geometric matings. E.g., the Kokopelli polynomial with p ≈ −0.156520 + 1.032247 i
corresponds to b ≈ 1.052038 + 1.657938 i. This mating is visualized in Figure 1.

To find anti-matings with periods 4 and 2, start with (9). Now the rela-
tion P (Q(0)) = 0 gives q2 + p = 0. Setting p = −q2 in (10), the condition
Q(P (Q(P (0)))) = 0 becomes (q8 + 2q5)2 + q = 0, or with x = q3 6= 0 we have
(x+ 1)(x4 + 3x3 + x2 − x+ 1) = 0. Here x = −1 has period 2.

(10)

The other two real solutions are obstructed, see Example 3.3. Two complex solutions
remain; for q3 ≈ 0.339 − 0.447 i and p = −q2, the geometric anti-mating gives the
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same rational map as the mating of Kokopelli and Basilica, see Figure 2. So the
matings of satellite period-4 with the Basilica cannot be realized as anti-matings.

In Example 2.2, an equation for q3 was obtained. This corresponds to the fact
that q may be replaced with ζ−1q, ζ3 = 1, without changing the dynamics, since
p = −q2 is replaced with ζp at the same time. — Note that matings are parametrized
by pairs of independent polynomials, while anti-matings reflect the dynamics of
even quartic polynomials Q ◦ P . To realize a given branch portrait, p and q are
determined from two coupled equations. Further examples are discussed in the
following Sections 2.4 and 2.5.

2.4 Defining rational maps

Each external ray of a formal mating g = P tQ or anti-mating g = P uQ connects
two landing points, one in each Julia set. When a point has two or more rays
landing, a graph is obtained, with rays alternating between endpoints in one Julia
set and in the other one. A ray-equivalence class is a maximal connected set
formed by rays and landing points, or a single point in a Fatou component. A
periodic ray-equivalence class has at most one branch point in the case of mating
[34, 17], because the branches of a periodic point are permuted transitively by the
first-return map; this may be different for anti-matings [1]. The combinatorics of
ray connections is discussed further in [17, 19, 18].

Now suppose that the ray-equivalence relation ∼ is closed: the limits of equiv-
alent sequences are contained in a single ray-equivalence class. Then the quotient
Ĉ/ ∼ is a Hausdorff space. If every ray-equivalence class is a tree, this quotient is
a topological sphere according to the Moore Theorem [29]. Then the topological
mating P

∐
Q or topological anti-mating P

∏
Q is a branched cover of degree 2

on the sphere. Note that it is defined only up to conjugation, and that this sphere
has a natural complex structure only on Fatou components. This definition is moti-
vated by the observation of Douady–Hubbard [10], that certain rational maps have
a Julia set structured as two polynomial Julia sets glued together at complex con-
jugate angles. An equivalent definition would be to consider the ray-equivalence
relation on the disjoint union Kp ] Kq or KQP ] KPQ ; this gives the same quotient
space, but starting with the formal (anti-)mating has various advantages: we may
look at the geometry of ray-equivalence classes and speak of trees and loops, we may
employ the Moore Theorem, and we may ask whether a projection to the quotient
space is a limit of homeomorphisms or a pseudo-isotopy.

Now a geometric (anti-)mating is a rational map f conjugate to the topolog-
ical (anti-)mating. The conjugation shall be conformal on Fatou components, which
determines f up to Möbius conjugation; this uniqueness statement assumes some
rigidity properties of quadratic rational maps, which have been verified in the cases
under consideration here, and which are conjectured to hold in general. Then f is
determined uniquely by the following normalization: the points 0, ∞, and 1 of the
formal (anti-)mating are mapped to the same values again; so 0 corresponds to the
critical point of P , ∞ to the critical point of Q, and 1 to the fixed 0-ray. A conju-
gation respecting this normalization is denoted by f ∼= P

∐
Q or f ∼= P

∏
Q, and

f is “the” geometric (anti-)mating. We shall write f̃ ' P
∐
Q or f̃ ' P

∏
Q when

only the critical points are normalized to 0 and ∞ in this way, and 1 is arbitrary;
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then f̃ is conjugate to f by a linear map, a rescaling.

Remark 2.3 (Shared matings and anti-matings)
If P1

∐
Q1 ' f ' P2

∐
Q2 with P1 6= P2 or Q1 6= Q2 , the rational map f has two

different representations as a mating. Note that in general P
∐
Q and Q

∐
P are

conjugate by a map interchanging the critical points, but not by one respecting
the critical points. If P

∐
Q ' Q

∐
P with P 6= Q , this is considered as a shared

mating as well; then the geometric mating is a symmetric rational map. At least
in the hyperbolic case, this is called a Wittner flip. Non-hyperbolic shared matings
are constructed in [18].

The same notion applies to anti-matings P1
∏
Q1 ' f ' P2

∏
Q2 ; since the

parameters always come in triples, a shared anti-mating means that for all ζ with
ζ3 = 1, we have p1 6= ζp2 or q1 6= ζ−1q2 .

Here is an equivalent definition of the geometric mating. hS ]hN : Kp ]Kq → Ĉ
is continuous and surjective, conformal in the interior, its fibers are ray-equivalence
classes, and it is a semiconjugation: hS ◦ P = f ◦ hS and hN ◦ Q = f ◦ hN . The
geometric anti-mating is described by a semi-conjugation hS ]hN : KQP ]KPQ → Ĉ
with hN ◦ P = f ◦ hS and hS ◦Q = f ◦ hN .

KPQ KQP

Figure 3: In the anti-mating f(z) ' (z2)
∏

(z2−1), the filled Julia sets ofQ◦P (z) = z4−1

(middle) and P ◦ Q(z) = (z2 − 1)2 (left) are glued together. The right image shows the

geometric anti-mating f(z) = 1 + a
z2

with a = −(3 +
√

5)/2, which is bitransitive of period

4. Here the moduli space map is a Basilica polynomial in fact. Note that both Julia sets

are real-symmetric, but there are no cyclic ray connections; αQP has the external angles

±6/15 and αPQ has ±3/15. This example belongs to the family discussed in Section 5.

With a few exceptions [43, 12, 29, 17], the actual construction of a geometric
mating or anti-mating is based on the following approach in the postcritically finite
case: the formal mating g = P t Q or anti-mating g = P u Q is a Thurston map,
a branched cover with a finite marked set. Two Thurston maps are combinatorially
equivalent, if they become topologically conjugate after an isotopic deformation rel-
ative to the marked sets. Under appropriate conditions, and after collapsing a finite
number of ray-equivalence classes, the essential (anti-)mating g̃ is combinatori-
ally equivalent to a rational map, the combinatorial (anti-)mating f . Finally,
there is a suitable semi-conjugation from g to f , which shows that the topological
(anti-)mating exists and f is a geometric (anti-)mating. This approach is carried
through, and explained more thoroughly, in Section 3.

There is yet another definition in terms of laminations [31, 1]. A lamination is
a collection of hyperbolic geodesics in the unit disk D, which is in a sense forward
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invariant or completely invariant under angle doubling, such that each leaf represents
two rays landing together at a Julia set [39]. Polygons of leaves correspond to branch
points and infinite gaps to Fatou components. Now we have laminations in two disk,
which are either mapped to themselves or to each other. Identify their boundaries at
conjugate angles, then collapsing only postcritical leaves is equivalent to the essential
(anti-)mating, while collapsing all leaves of closed invariant laminations gives the
topological (anti-)mating.

Remark 2.4 (Higher degrees)
The various definitions of (anti-)mating have a direct generalization to polynomials
and rational maps of degree d > 2. There are more parameters, more critical
points, more fixed points, and corresponding changes regarding the normalization
and possible rotation. And there are new phenomena:

• When the degree d is a square, the rational map may be a flexible Lattès map
[27]. Then (anti-)mating is not unique, in the sense that a one-parameter family
of geometric (anti-)matings corresponds to a single essential mating. For quadratic
maps, this does not happen in the postcritically finite case, and probably not at all
according to the Dense Hyperbolicity Conjecture.

• The existence results in Section 3 rely on the description of Thurston obstructions
in terms of Lévy cycles in the quadratic case. This is no longer true for d > 2 [36, 6].

2.5 Rational maps as matings and anti-matings

Hyperbolic quadratic rational maps f are classified as follows according to Rees [31]
and Milnor [25]:

B or II is bitransitive: both critical points are in the same cycle of Fatou compo-
nents but not in the same component.

C or III is a capture: one critical point is in a strictly preperiodic Fatou component.
(Rees uses “capture” for a subset of type III-maps, with a restricted capture path.)

D or IV has two disjoint cycles of Fatou components.

E or I is escaping: both critical orbits converge to a fixed point within the only
Fatou component.

Now each hyperbolic component of type B, C, D contains a unique postcritically
finite map up to normalization, but there is no such map of type E. For any postcriti-
cally finite map f , the branch portrait is a directed graph, whose vertices correspond
to critical and postcritical points. If f is not hyperbolic, either one or both critical
points are iterated to repelling periodic points; in the latter case, the critical orbits
may be disjoint, or meet in various ways.

Proposition 2.5 (Types of rational maps)
Consider a hyperbolic quadratic rational map f .

1. If f ∼= P
∐
Q is a geometric mating, then f is of type D. All combinations of

periods ≥ 1 occur, except for both critical orbits of period 2.

2. If f ∼= P
∏
Q is a geometric anti-mating, then f may be of type B, C, or D. All

attracting periods are even, and in types B and C, the number of iterations from one
critical point to the other one is odd.
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Proof: 1. The interiors of the two filled Julia sets are disjoint. We have period
1 for parameters in the main cardioid ofM, all periods ≥ 2 in the 1/2-limb, and all
periods ≥ 3 in the 1/3-limb.

2. The parity is a consequence of the orbits alternating between two filled Julia
sets. See Figure 2 for type D, Figure 3 for type B, and Section 6 for type C.

Note that in non-hyperbolic cases, due to possible identifications, the parity is not
restricted: a ray-equivalence class may have a lower period than the landing points
of the rays, and points in different Julia sets are identified. — Not every f with
the properties of Proposition 2.5 is a geometric mating or anti-mating, respectively.
See Section 4 for a sufficient criterion. For anti-matings, counterexamples are found
in Section 7 for type B, Section 6 for type C, and in Example 2.2 for type D. For
matings, the classical counterexample is due to Ben Wittner [42, p. 84]:

Example 2.6 (Wittner)
There is a unique real quadratic rational map of the form fw(z) = (z2 +a)/(z2 + b) ,
such that 0 is 4-periodic and ∞ is 3-periodic; approximately a = −1.381186 and
b = −0.388205. This map is not a geometric mating of quadratic polynomials.

Proof: Any mating f ' P
∐
Q has this branch portrait, if and only if P is

4-periodic and Q is 3-periodic. Wittner determined all combinations numerically
and found them to be different from fw . Alternatively, a combinatorial argument
shows that for all of these matings, some periodic Fatou components have common
boundary points: this is obvious when P or Q is of satellite type. Otherwise P is
the (Co-)Kokopelli with angle ±3/15 and Q is the Airplane — and 4-periodic Fatou
components are drawn together pairwise by ray-connections through the 2-cycle of
the Airplane. But for fw no closed Fatou components in the same cycle meet, since
the critical orbits are ordered cyclically as z3 < w2 < z0 < z2 < w1 < z1 < w0 on
R ∪ {∞}. The Julia set Jw is a Sierpinski carpet in fact [25].

Periodic points of the topological and geometric (anti-)matings correspond to
periodic ray-equivalence classes of the formal (anti-)mating. For periods 1 and 2,
these have the following form:

Proposition 2.7 (Ray-equivalence classes)
1. Suppose there are no direct connections between the fixed points ϕ0(αp) and
ϕ∞(αq) of the formal mating g = P t Q, and consider f ∼= P

∐
Q. Then the fixed

points of f correspond to the 0-ray and to the ray-equivalence classes of both α’s,
which may have various rotation numbers and connections of diameters 2 or 4. Or,
one or both may be attracting.

The 2-periodic classes are given by the 1/3- and 2/3-rays, except when, say, p is
in the 1/2-limb: then the ray-equivalence classes contain the 2-periodic points of P ,
or these are attracting, while the 2-cycle of Q is identified with αp .

2. Suppose there are no direct connections between ϕ0(αQP ) and ϕ∞(αPQ) in the
formal anti-mating g = PuQ, and f ∼= P

∏
Q. Then the fixed points of f correspond

to the 0-ray, 1/3-ray, and 2/3-ray. The 2-cycle is given by the ray equivalence classes
of both α’s, which may have various rotation numbers and connections of different
diameters, or be attracting.

Proof: The closed ray-equivalence classes are mutually disjoint and they have
the required periods. The 0-ray of the mating, and the three fixed rays of the anti-
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mating, are the only fixed rays; so they cannot land together with rays of a higher
ray period. Finally, a quadratic rational map has only three fixed points and one
2-cycle, with possible identifications for parabolic maps, so there are no more ray-
equivalence classes with these periods. For the classes of αp and αq , recall that the
root of a limb of M is narrow: all other components in the wake have a higher
period.

Note that under these combinatorial assumptions, in the geometrically finite or
postcritically finite case, the geometric (anti-)mating f exists according to Theo-
rems 3.1 and 3.2, but we shall take that as an additional hypothesis for the time
being. Proposition 2.7 is employed in Section 3.5 and in the following example:

Example 2.8 (Lattès map of type (2, 4, 4))
The quadratic Lattès map f with orbifold type (2, 4, 4) has a well-known represen-
tation as a mating ±1/4

∐
1/2; further representations are discussed in Section 5 of

[19]. It is given by f(z) = −1 + 2
z2

with 0 ⇒ ∞ ⇒ −1 → 1 ↑, which is conjugate
to f−2(z) = 1 − 2

z2
in the normalization from Section 5. To represent f as a geo-

metric anti-mating, we use that the fixed points of the rational map correspond to
ray-equivalence classes with just one direct connection, between 2-periodic points
of the formal anti-mating. So there is no indirect ray connection between p ∈ KPQ

and 0 ∈ KPQ either, but p = 0:

(11)

These relations have the solution p = 0 and q3 = −2, which is unique except for the
usual rotation with ζ, ζ3 = 1. A 2-cycle of g is collapsed indeed in the combinatorial
mating; convergence of rational maps is obtained explicitly from the linear order
of marked points and the pullback relation of the Thurston Algorithm. Here the
moduli space map is a Chebyshev polynomial in fact. Note that both Julia sets KQP

and KPQ are real-symmetric (or rotated), but there are no cyclic ray connections;
see Figure 3 for another example of this phenomenon.

2.6 Implementation of slow mating and anti-mating

formulas, extra care with branch portrait, mention equi gluing

3 Constructing rational maps

Necessary and sufficient conditions for the existence of geometrically finite matings,
and of postcritically finite anti-matings, are formulated in Section 3.1. They are
proved in Sections 3.2–3.6 using the notion of a good Lévy cycle [38], with special
treatment of Lattès maps of type (2, 2, 2, 2). A few remarks on the postcritically
infinite case are given in Section 3.7.
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3.1 Existence of matings and anti-matings

For matings, the classical result is due to Rees–Shishikura–Tan [31, 38, 35], with con-
tributions by Cui, Häıssinsky, and the author [13, 9, 19], based on work of Douady–
Hubbard and Thurston [11, 14]:

Theorem 3.1 (Quadratic mating)
Suppose P (z) = z2 + p and Q(z) = z2 + q are geometrically finite, i.e., postcritically
finite, hyperbolic, or parabolic. Then the geometric mating f ∼= P

∐
Q exists, if and

only if the parameters p and q are not from conjugate closed limbs of M.

A corresponding result for postcritically finite anti-matings is due to Ahmadi
Dastjerdi, as a special case of Theorem 5.11.1 in [1], using an alternative definition
in terms of laminations:

Theorem 3.2 (Quadratic anti-mating)
Suppose P (z) = z2 +p and Q(z) = z2 + q are such that the quartic polynomial Q◦P
is postcritically finite. Then the geometric anti-mating f ∼= P

∏
Q exists, if and only

if the rays with angles 0, 1/3, and 2/3 land at distinct fixed points of Q ◦ P .

There is still a gap, or possible exception, for g̃ of Lattès type (2, 2, 2, 2) with a
postcritical 2-cycle.

In the postcritically finite case, both theorems will be proved in parallel in Sec-
tions 3.2–3.6, by showing that the essential (anti-)mating g̃ is an unobstructed
Thurston map and the combinatorial (anti-)mating f ∼ g̃ exists, which requires
a special treatment of Lattès-type maps. Morover, there is a semi-conjugation from
g to f collapsing all ray-equivalence classes, so f is a geometric (anti-)mating in fact
and the topological (anti-)mating exists as well, f ∼= P

∐
Q or f ∼= P

∏
Q.

Example 3.3 (An anti-mating with a Hausdorff obstruction)
According to Example 2.2, there are two formal anti-matings g = P u Q with real
parameters, such that ∞ is 2-periodic and 0 is 4-periodic: we have q3 ≈ −1.3894 or
q3 ≈ −2.2888, and p = −q2. In both cases, (Q ◦ P )′(αQP ) > 1, so both RQP (±1/3)
land at αQP , and there is a good obstruction and a closed ray connection between
ϕ0(αQP ) and ϕ∞(αPQ). Gluing the quartic filled Julia sets gives a countable union
of spheres for q3 ≈ −1.3894. When q3 ≈ −2.2888, the closed ray connection with
the angles ±11/24 separates the critical values. Suitable preimages accumulate on
the boundary of the Fatou component around ϕ∞(p), so the ray equivalence relation
is not closed, and the quotient space is not Hausdorff. — For matings, examples of
this kind are discussed in terms of renormalization in [17].

3.2 Obstructions and Lévy cycles

Thurston Theorem, later developments: additional, without orbifold, algebraic, aug-
mented

always marked crpt and 1
obstructions, Lévy, good and degenerate, check vs removable
ref tree in talk Mitsu
single good orientation-reversing on TL p. 15, equivalent dfn on p. 14
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3.3 Pullback converges to ray connections

minimal number of rays crossing equator converge to rays, other connected compo-
nents to points, also with additional marked points, extremities marked because minimal
number, homotopy wrt P’ defines unique preimage

neighborhoods V ⊃ V ′ ⊃ KPQ ∪ KQP with g : V ′ → V expanding
pull back a connected set
also for additional marked points, also deg Levy

3.4 Rotation numbers for good obstructions

For matings, condition of conjugate rotation numbers, which means conjugate limbs.
For anti-maings, alternative proof with laminations: Theorem 5.11.1 in [1]
A non-removable obstruction of the formal anti-mating would be related to cyclic

ray connections between fixed points of Q ◦ P and P ◦ Q. It turns out that these
are of a quite restricted form:

Proposition 3.4 (Cyclic ray-connections)
There is a cyclic ray connection between fixed points of Q◦P and P ◦Q, if and only
if two of the rays with angles 0, 1/3, and 2/3 land together at ∂KQP .

Proof: First, suppose that the rays with angles, say, 0 and 1/3 land together at
a fixed point αQP ∈ ∂KQP . Then the rays with angles 2 · 0 = 0 and 2 · 1/3 = 2/3
land together at a fixed point αPQ ∈ ∂KPQ and the angles are conjugate, so there
is a closed ray connection. If the fixed points are not marked, this loop is a good
Lévy cycle of period 1, since it is mapped to itself in an orientation-reversing way
by the formal anti-mating g = P u Q. If the fixed points are marked, two nearby
loops form a good Lévy cycle of period 2.

Conversely, assume that the three rays land at distinct fixed points, then the
fourth fixed point αQP is attracting or a pinching point with rotation number 6= 0.
Now P : αQP 7→ αPQ and Q : αPQ 7→ αQP doubles the angles. We shall try to
find a cyclic ray connection, and fail. The graph of ray connections will be turned
by g2, so the rotation numbers at αQP and αPQ shall be conjugate, and they are
equal by the semi-conjugations. Thus the rotation number is 1/2 and all angles have
denominator 15; these form six possible 2-cycles.

If, e.g., there is one 2-cycle of rays at αQP with the angles 1/15 and 4/15, then
αPQ has 2/15 and 8/15. These are not conjugate to the former ones, and this is not
a closed ray connection. So suppose that there are two 2-cycles at αQP , one with
the angles 1/15 and 4/15, another one with 7/15 and 13/15. Then the angles of
αPQ would be conjugate, but unfortunately, these four angles cannot be landing at
the same point of a symmetric Julia set.

The same arguments work for all six possible pairs of angles, so there cannot be
a direct cyclic ray connection. Again, suppose that αQP has the angles 1/15 and
4/15, and αPQ has 2/15 and 8/15. To rule out indirect ray connections as well,
recall that P ◦ Q is even. So −αPQ has the angles 19/30 and 1/30. The complex
conjugate angles 11/30 and 29/30 probably belong to different points in KQP , but
the rays are connected through KPQ and they shield the angles 1/15 and 4/15 from
forming indirect ray connections: these would be invariant under the rotation as
well and the denominator would have to be 15 throughout. Actually, indirect ray

13



connections are ruled out, because the intersection with each Julia set is connected,
thus a single point.

3.5 Combinatorial mating and anti-mating

when no good obstruction, collapse ray-equivalence trees to define the essential (anti-)
mating. alternative definitions. note Julia sets no longer invariant.

show it is unobstructed.
then there is a combinatorial equivalence to a rational map
however, this requires special treatment of (2, 2, 2, 2). See [19] for matings.
Here for anti-matings: show that a)b)c) only self-anti-matings, d) still open.
convergence, automatic identification, also additional

3.6 Geometric mating and anti-mating

[35] with rays, [8] with continua

3.7 Postcritically infinite maps

also Siegel, Timorin boundary, Dima [12, 29, 17]

4 Equator and anti-equator

The characterization of matings by an equator is a folk theorem going back to
Thurston; it was proved in [42, 24] under similar assumptions as below. The cor-
responding result for anti-matings was conjectured by Meyer [4, 24]. Here there is
nothing special about the quadratic case, and we shall treat the case of degree d ≥ 2
according to Remark 2.4:

Theorem 4.1 (Equator and anti-equator)
Suppose f is a postcritically finite rational map of degree d ≥ 2, with marked critical
points, and possibly additional marked points. An equator is a simple closed curve
γ, such that γ′ = f−1(γ) is connected and isotopic to γ relative to the marked set,
and f : γ′ → γ is orientation-preserving with respect to the isotopy. When f is
orientation-reversing, γ is an anti-equator.

1. Now f is combinatorially equivalent to a formal mating g = P t Q, if and only
if it has an equator.

2. And f is combinatorially equivalent to a formal anti-mating g = P u Q, if and
only if it has an anti-equator.

Remark 4.2 (Hyperbolic and non-hyperbolic maps)
1. Suppose f ∼= P

∐
Q is a postcritically finite geometric mating, without addi-

tional marked points. If f is hyperbolic, it is combinatorially equivalent to the
formal mating g = P t Q, so it has an equator. If f is not hyperbolic, there may
be identifications from postcritical ray-equivalence classes, such that g is obstructed
and f is combinatorially equivalent to an essential mating g̃ 6= g. Then f does not
have an equator corresponding to this representation as a mating. — Analogous
statements apply to anti-matings.
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2. In the hyperbolic case, shared matings may be obtained by finding non-homotopic
equators for the same f . When f is not hyperbolic, there may be more represen-
tations as a mating, than there are equators. See [18, 24] for various techniques to
obtain shared matings in this case.

Proof of Theorem 4.1: By construction, a formal mating g = P t Q has the
equator ∂D, and a formal anti-mating g = P u Q has the anti-equator ∂D. So if f
is combinatorially equivalent to g, with ψ0 ◦ g = f ◦ψ1 , then γ = ψ0(∂D) is isotopic
to γ′ = f−1(γ) = ψ1(∂D).

1. Conversely, assuming that f has an equator, it is combinatorially equivalent
to a Thurston map g with g(z) = zd for z ∈ ∂D. So g is a formal mating of two
topological polynomials P̂ = ϕ−10 ◦ g ◦ ϕ0 and Q̂ = ϕ−1∞ ◦ g ◦ ϕ∞. Suppose P̂ is
obstructed, thus f is obstructed as well, then f would be a flexible Lattès map
with four postcritical points. Now P̂ and Q̂ together have six postcritical points
including ∞; since P̂ has at least four, Q̂ has at most two. Then d − 1 finite
critical points of Q̂ are mapped to the finite postcritical point, which is fixed and
has 2d−1 > d preimages, a contradiction. So P̂ and analogously Q̂ are unobstructed
in any case. By the Thurston Theorem, there are equivalent polynomials P and Q,
which are determined uniquely by requiring them monic, centered, and with suitable
asymptotics of the 0-ray under the equivalence. Now g is equivalent to the formal
mating P t Q : if the equivalences did not match on the equator, the 0-ray would
be Dehn twisted under pullback.

2. Likewise, when f has an anti-equator, it is equivalent to a Thurston map
g with g(z) = z−d for z ∈ ∂D. So g is a formal anti-mating of two topological
polynomials P̂ = ϕ−1∞ ◦ g ◦ ϕ0 and Q̂ = ϕ−10 ◦ g ◦ ϕ∞. By item 1, Q̂ ◦ P̂ and P̂ ◦ Q̂
are unobstructed and equivalent to polynomials of degree d2, but we want to know
more. Analogously to Section 2.3, define the disjoint union ĈS ] ĈN and consider
P̂ : ĈS → ĈN and Q̂ : ĈN → ĈS . For a pair of homeomorphisms ξ0 : ĈS → ĈS and
η0 : ĈN → ĈN , a kind of Thurston pullback is defined naturally by the commuting
diagrams

; (12)

it descends to a pullback map on a pair of Teichmüller spaces. For a choice of
(ξ0 , η0), the pullback defines a sequence of (ξj , ηj). Now both subsequences ξ2k and
ξ2k+1 correspond to the pullback map for Q̂ ◦ P̂ , and their classes in Teichmüller
space converge to the same element. In the second Teichmüller space, the classes of
ηj converge for the same reason. So the marked points and hence the polynomials
Pj and Qj converge as well: for appropriate (ξ , η) we have ξ ◦ Q̂ = Q ◦ η′ and

η ◦ P̂ = P ◦ ξ′, with ξ′ isotopic to ξ relative to the marked points in ĈS and η′

isotopic to η relative to the marked points in ĈN .
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For the pullback it is easiest to send chosen marked points to 0, 1, ∞. After
obtaining the limits, we may assume that ξ and η have affine asymptotics at ∞.
Perform affine conjugations according to (7), such that P and Q are monic and
centered, and such that ξ and η do not rotate the 0-rays. Then the equivalences
match on the equator without an additional Dehn twist, and g is combinatorially
equivalent to the formal anti-mating P uQ. — The choices made in the construction
of g from f implicitly singled out one of the d + 1 fixed points to be on the 0-ray;
afterwards, g may be rotated with ζ, ζd+1 = 1.

When P and Q have only preperiodic critical points, the essential mating g̃
and the geometric mating f ∼= P

∐
Q may have a pseudo-equator, which passes

through all postcritical points; see [23, 24] for the definition. The equator of g
is deformed to a pseudo-equator of g̃, if and only if there are at most direct ray
connections between postcritical points. Conversely, when f has a pseudo-equator
γ, each pseudo-isotopy from γ to f−1(γ) determines a pair of polynomials P, Q
with f ' P

∐
Q. — Probably there are analogous statements for anti-matings and

anti-pseudo-equators.

5 Bitransitive maps

expand: Suppose p = 0, so Q ◦ P (z) = z4 + q and P ◦ Q(z) = (z2 + q)2. The
connectedness locus in the q-plane is the Multibrot set of degree 4. If the geometric
anti-mating f of P (z) = z2 and Q(z) = z2 + q exists, it may be normalized to
the form f(z) = fa(z) = 1 + a

z2
. These quadratic rational maps satisfy . . . →

0 ⇒ ∞ ⇒ 1 → . . . ; the parameter space is shown in Figure 4 right. When fa is
hyperbolic, it must be of bitransitive type (or escaping), so it cannot be a mating.
(Preperiodic matings in this family provide a simple case of mating discontinuity.
See Theorem 6.1 in [18].) Conversely, if fa is an anti-mating, then p = 0 in the
hyperbolic case; in the preperiodic case we may have p 6= 0, when there is a ray
connection between p ∈ KPQ and 0 ∈ KPQ. Concrete examples have been given in
Example 2.8 and in Figure 3.

6 Basilica maps in V2

expand: p = −q2 gives Q ◦ P (z) = (z2 − q2)2 + q and P ◦ Q(z) = z4 + 2qz2. This
quartic family is discussed by Gamaliel Blé [2]. If the geometric anti-mating f of
P (z) = z2 − q2 and Q(z) = z2 + q exists, it is in V2 : f(z) = fb(z) = z2+b

z2−1 has a 2-
periodic critical point∞⇒ 1→∞. This example of anti-matings is due to Timorin
[40] in a different normalization. All hyperbolic maps of disjoint type are known to
be matings S

∐
B with the Basilica polynomial B(z) = z2 − 1 [. . . ]. Some maps of

disjoint type or capture type are anti-matings as well. See the example of disjoint
type in Figure 2. Examples of capture type require at least 5 steps from 0 to ∞;
probably the blue components in Figure 5 right contain anti-matings, when they are
connected to the outer bitransitive component through a series of small Mandelbrot
sets. Finally, an anti-mating of Misiurewicz type is given by q3 =

√
2− 1 and b = 2;

the same map is a mating (z2 ± i)
∐

(z2 − 1).
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E

B

Figure 4: Left: quartic polynomials P ◦Q or Q◦P with P (z) = z2 and Q(z) = z2+q, the

connectedness locus is the Multibrot set of z4 + q. Right: rational maps fa with 0⇒∞.

Probably the exterior disk with its blue and black sublimbs corresponds to one-third of

the Multibrot set, or to that set parametrized by q3.

Figure 5: Corresponding subsets of the parameter planes, left: quartic polynomials

P ◦ Q or Q ◦ P with P (z) = z2 − q2 and Q(z) = z2 + q, right: rational maps fb with

∞ 2-periodic. Anti-mating maps the polynomial connectedness locus into the rational

family. Note that all capture components of the polynomial family are blue, while capture

components in V2 are blue or green; only a subset of the blue ones contains anti-matings.

7 Symmetric maps and Chebyshev matings

A normalized quadratic rational map commutes with the involution j(z) = 1/z, if
it is of the form fc(z) = z2+c

1+cz2
with c 6= ±1; for c → ∞ it becomes 1/z2. Every

self-mating f ∼= P
∐
P is symmetric; for suitable P 6= Q there are also flipped

matings P
∐
Q ' f ' Q

∐
P , which are symmetric as well. Moreover, any self-anti-

mating f ∼= P
∏
P is symmetric; here the quadratic dynamics of P is meaningful,

we have two copies of the quadratic Julia set Kp glued together, and the critical
orbits alternate between both copies. If q = ζp with ζ3 = 1, then f ∼= P

∏
Q is a

rescaled self-anti-mating.
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Note that j◦fc = fc◦j implies that fc̃ = j◦fc is a symmetric map as well; we have
c̃ = 1/c. The Julia sets and the second iterates of fc and fc̃ agree. Now i(c) = 1/c
defines an involution in parameter space. Since the critical orbits are interchanged
by the dynamic involution j, exchanging every other point in the critcal orbits of fc
gives the critical orbits of fc̃ . So i acts as follows on hyperbolic symmetric maps:

• Disjoint type D with even periods is transformed to the same kind;

• Type D with odd periods n is transformed to bitransitive type B with period
2n, and vice versa;

• Type B with period divisible by 4 is transformed to the same kind.

Moreover, escaping type E is transformed to itself, and there are no symmetric maps
of capture type C. Another transformation due to Carsten Petersen is discussed
below. Here the normalizations are adapted to (anti-)matings with critical points
at 0 and ∞, but transformations of symmetric maps have simpler formulas in a
different normalization. For comparison, these formulas are presented here using
capital letters; they are related by Z = 1+z

1−z and z = Z−1
Z+1

, C = 1
2

1+c
1−c and c = 2C−1

2C+1
.

dynamic involution j(z) = 1/z J(Z) = −Z
symmetric map fc(z) = z2+c

1+cz2
FC(Z) = C(Z + 1/Z)

parameter involution i(c) = 1/c I(C) = −C
dynamic Petersen w = l(z) = 2z

z2+1
W = L(Z) = Z2

Chebyshev map ya(w) = −w2+(a+2)
w2+a

YA(W ) = A(W + 1/W + 2)

parameter Petersen a = h(c) = −2 c2+1
(c−1)2 A = H(C) = C2

Here a Chebyshev map ya(w) = −w2+(a+2)
w2+a

, a 6= −1, is a quadratic rational map
with ∞ ⇒ −1 → 1 ↑. The Petersen transformation w = l(z) identifies z and j(z);
it is a semi-conjugation l ◦ fc = ya ◦ l with a = h(c). If fc is hyperbolic of type D,
ya has the same period, while the period of type B is halved. For matings we have
the following relations [25, 43]:

Theorem 7.1 (Petersen transformation)
Consider quadratic polynomials P with p ∈M, Kp locally connected, and symmetric
maps fc with c 6= ±1.

1. We have fc ∼= P
∐
P , if and only if fc̃

∼= P
∏
P with c̃ = 1/c = i(c).

2. Then both fc and fc̃ are semi-conjugate to ya(w) with a = h(c) = h(c̃), and
ya ∼= P

∐
T with the Chebyshev polynomial T (z) = z2 − 2.

Proof: Assuming ϕ∞ = j ◦ ϕ0 according to (1), the formal mating and anti-
mating are related by j ◦ (P t P ) = P u P .

For both maps, j sends the ray R(θ) to R(−θ)
note l also when not self-mating
note Ch complete classification, how anti?
also for formal and thurston, interpretation circle to segment, length of ray con-

nections
one step is with semi-conjugations, why N=jS, first on formal sphere?
Use an equivalent definition of the geometric mating. hS ] hN : Kp ] Kq → Ĉ

is continuous and surjective, conformal in the interior, its fibers are ray-equivalence
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classes, and it is a semiconjugation: hS ◦ P = f ◦ hS and hN ◦ Q = f ◦ hN . The
geometric anti-mating is described by a semi-conjugation hS ]hN : KQP ]KPQ → Ĉ
with hN ◦ P = f ◦ hS and hS ◦Q = f ◦ hN .

Conversely, if ya ∼= P
∐
T and a = h(c), then either fc ∼= P

∐
P or fc ∼= P

∏
P .

— at least when geometrically finite or assuming existence, can only show topological

So if P is geometrically finite, both f ∼= P
∐
P and f̃ ∼= P

∏
P exist, if and only if

p ∈M is not in the closed 1/2-limb.
Discuss all representations of several examples.
description of parameter space, loci are where?
maybe question weird bifu, generalization of petersen for other Ch-matings
ch-anti ex 244
Three of the four kinds of Lattès maps with orbifold signature (2, 2, 2, 2) are sym-

metric, and in terms of external angles we have 1/4
∏

1/4 ' 3/4
∐

3/4, 1/6
∏

1/6 '
11/14

∐
11/14, and 11/14

∏
11/14 ' 1/6

∐
1/6. There are further representations by

non-self matings [27, 19].
Note that the symmetry locus contains hyperbolic maps as well, which are neither

self-matings nor self-anti-matings. See the green–black locus in Figure 6 left. The
corresponding maps in the Chebyshev family may have a description as matings with
preperiodic polynomials from suitable limbs, which are partially shared; see Section 4 in
[18], and the green–black locus in Figure 6 right.

Denote the Rabbit polynomial by R and the Airplane polynomial by A. Up to
complex conjugation, there are two symmetric maps of disjoint type with period 3,
which are given by the self-mating R

∐
R and the non-self mating R

∐
A ∼ A

∐
R. The

involution c 7→ 1/c sends each of these to a symmetric bitransitive map of period 6. The
former one is described as a self-anti-mating R

∏
R, but the latter cannot be described

as an anti-mating: when P uQ maps 0 to ∞ and ∞ to 0 in 3 steps, the only solution
with p 6= q turns out to be real, p3 = −(3 ±

√
5)/2 and q = 1/p, q3 = −(3 ∓

√
5)/2.

Now f ∼= P
∏
Q is real with f(z) ≈ z2−7.0352

z2−3.2754 for “+”, while the symmetric bitransitive
maps are not real with respect to a complex conjugation.

8 Suggestions for further research

There is a gap, or possible counterexample, in the existence result for anti-matings:
when the essential anti-mating g̃ is of type (2, 2, 2, 2) with a postcritical 2-cycle,
does the affine lift have conjugate eigenvalues? Problem: find all anti-matings of
this type, and check the eigenvalues.

The present paper concentrates on anti-matings P
∏
Q with Q ◦P postcritically

finite. Problem: As the next step, construct anti-matings with hyperbolic and
parabolic polynomials, especially for geometric anti-matings of types B and C.

Mating is not jointly continuous with respect to the polynomial parameters.
Examples of discontinuity are discussed in [18], both classical ones due to Adam
Epstein, and new ones. Problem: construct analogous examples of discontinuity
for anti-matings.

The existence criterion for postcritically finite (anti-)matings in Section 3 re-
lied on the notion of a good Lévy cycle; for degrees d > 2, other kinds of non-
removable obstructions are possible. Problem: Find conditions for matability and
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Figure 6: The left image shows the parameter plane of symmetric maps fc . Conjec-

turally, the self-mating locus is blue–black and the self-anti-mating locus is red–black; each

corresponds to the Mandelbrot set with its 1/2-limb removed.

The Petersen transformation maps both sets to the magenta–black subset of the right

image, which is the locus of Chebyshev matings within the family of Chebyshev maps: the

rational maps ya , such that ya(∞) is pre-fixed.

anti-matability in higher degrees.
According to Section 2.3, and to Section 5.14 in [1], even quartic polynomials

may be modeled by pairs of quadratic polynomials, and pairs of laminations are
characterized by pairs of minors. Problems:

• Discuss limbs in the two-dimensional parameter space in terms of the rotation
numbers and angles at the fixed points αQP and αPQ .

• Describe characteristic ray-pairs [26, 33] of the same ray period within a limb.

• Implement a spider algorithm on two planes, CS ] CN , analogously to (12).
For a postcritically finite rational map f with a pseudo-equator, Meyer [24] gives

an algorithm to determine polynomials P and Q with f ' P
∐
Q. Problem: find

an anlogous algorithm for f with a pseudo-anti-equator.
When a polynomial P has an invariant embedded tree containing the postcritical

points 6=∞, with finitely many endpoints or at least compact, its core entropy h(P )
is defined as the topological entropy on this Hubbard tree; see [16] and the references
therein. It is tempting to define the core entropy of a rational map f in terms of
some invariant graph. For f ∼= P

∐
Q, such a graph is obtained from suitably

extended Hubbard trees, and the entropy of f would be h(f) = max(h(P ), h(Q)).
This approach might be more natural for anti-matings f ∼= P

∏
Q, because the core

entropies of Q ◦ P and P ◦ Q agree: h(f) = 1
2
h(Q ◦ P ) = 1

2
h(P ◦ Q). However, in

both cases there is an ambiguity due to shared (anti-)matings: for p, q ∈ M with
the angles 59/240 and 63/240, we have P

∐
P ' Q

∐
Q [18], and P

∏
P ' Q

∏
Q

according to Theorem 7.1, but h(P ) < h(Q). Problem: find a useful notion of core
entropy for a class of rational maps.

One-parameter families of quartic polynomials and corresponding rational maps
are discussed in Sections 5–7. Problem: describe the loci of mating and anti-
mating within these families. Numerical experiments will be crucial to formulate
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conjectures.
Symmetric rational maps may be matings of different polynomials P 6= Q; the

simplest example is f ' R
∐
A ' A

∐
R, with Rabbit R and Airplane A. The

Petersen transformation in Theorem 7.1 sends f to g ' A
∐

(z2 ± i). Problem: Is
this an example of a more general relation?

The operations of tuning, mating, and anti-mating are special cases of the fol-
lowing kinds of combinations, where one or two polynomials P and Q are inserted
into periodic critical Fatou components of a postcritically finite quadratic map R:

1a) R has one periodic critical point and the other one is repelling-preperiodic;

1b) R is of type C;

1c) R is of type D, and Kp is inserted into one of the two critical components;

2) R is of type D, and Kp is inserted into one of the two critical components, Kq

into the other one;

3) R is of type B, KQP and KPQ are inserted into the critical components.

So tuning of polynomials is of kind 1c), and anti-mating is kind 3 with R(z) = 1/z2.
There are two ways to describe mating P

∐
Q here: either set R = P , and insert Q

into the basin of ∞ according to kind 1a) or 1c); or set R(z) = z2 and insert P and
Q according to kind 2).

When the relevant Fatou components are disks, and their closures are pairwise
disjoint except for at most one point, these constructions can be analyzed in terms
of multicurves [30], and they can be described in terms of renormalization, even
when P is not postcritically finite. Closed ray connections and good obstructions
must be ruled out in other cases. When the period of R is > 1, Ahmadi Dastjerdi
[1] has shown that these do not occur in cases 1b) and 1c), and in case 3) only
when there is a closed ray connection through two repelling fixed points; this result
includes anti-mating with R(z) = 1/z2 and cases like R(z) = 1− 1/z2, where Fatou
components have a Cantor set of common boundary points. Problem: Say more
about

• kinds 1a) and 2) in general;

• other concrete examples of kinds 2) and 3);

• analogous constructions in higher degrees.
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